Abstract:Biologists all over the world use camera traps to monitor biodiversity and wildlife population density. The computer vision community has been making strides towards automating the species classification challenge in camera traps, but it has proven difficult to to apply models trained in one region to images collected in different geographic areas. In some cases, accuracy falls off catastrophically in new region, due to both changes in background and the presence of previously-unseen species. We propose a pipeline that takes advantage of a pre-trained general animal detector and a smaller set of labeled images to train a classification model that can efficiently achieve accurate results in a new region.
Abstract:We present an instance segmentation scheme based on pixel affinity information, which is the relationship of two pixels belonging to a same instance. In our scheme, we use two neural networks with similar structure. One is to predict pixel level semantic score and the other is designed to derive pixel affinities. Regarding pixels as the vertexes and affinities as edges, we then propose a simple yet effective graph merge algorithm to cluster pixels into instances. Experimental results show that our scheme can generate fine-grained instance mask. With Cityscapes training data, the proposed scheme achieves 27.3 AP on test set.