Abstract:Causal representation learning aims at recovering latent causal variables from high-dimensional observations to solve causal downstream tasks, such as predicting the effect of new interventions or more robust classification. A plethora of methods have been developed, each tackling carefully crafted problem settings that lead to different types of identifiability. The folklore is that these different settings are important, as they are often linked to different rungs of Pearl's causal hierarchy, although not all neatly fit. Our main contribution is to show that many existing causal representation learning approaches methodologically align the representation to known data symmetries. Identification of the variables is guided by equivalence classes across different data pockets that are not necessarily causal. This result suggests important implications, allowing us to unify many existing approaches in a single method that can mix and match different assumptions, including non-causal ones, based on the invariances relevant to our application. It also significantly benefits applicability, which we demonstrate by improving treatment effect estimation on real-world high-dimensional ecological data. Overall, this paper clarifies the role of causality assumptions in the discovery of causal variables and shifts the focus to preserving data symmetries.
Abstract:Machine Learning and AI have the potential to transform data-driven scientific discovery, enabling accurate predictions for several scientific phenomena. As many scientific questions are inherently causal, this paper looks at the causal inference task of treatment effect estimation, where we assume binary effects that are recorded as high-dimensional images in a Randomized Controlled Trial (RCT). Despite being the simplest possible setting and a perfect fit for deep learning, we theoretically find that many common choices in the literature may lead to biased estimates. To test the practical impact of these considerations, we recorded the first real-world benchmark for causal inference downstream tasks on high-dimensional observations as an RCT studying how garden ants (Lasius neglectus) respond to microparticles applied onto their colony members by hygienic grooming. Comparing 6 480 models fine-tuned from state-of-the-art visual backbones, we find that the sampling and modeling choices significantly affect the accuracy of the causal estimate, and that classification accuracy is not a proxy thereof. We further validated the analysis, repeating it on a synthetically generated visual data set controlling the causal model. Our results suggest that future benchmarks should carefully consider real downstream scientific questions, especially causal ones. Further, we highlight guidelines for representation learning methods to help answer causal questions in the sciences. All code and data will be released.
Abstract:Learning behavioral patterns from observational data has been a de-facto approach to motion forecasting. Yet, the current paradigm suffers from two shortcomings: brittle under covariate shift and inefficient for knowledge transfer. In this work, we propose to address these challenges from a causal representation perspective. We first introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables, namely invariant mechanisms, style confounders, and spurious features. We then introduce a learning framework that treats each group separately: (i) unlike the common practice of merging datasets collected from different locations, we exploit their subtle distinctions by means of an invariance loss encouraging the model to suppress spurious correlations; (ii) we devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph; (iii) we introduce a style consistency loss that not only enforces the structure of style representations but also serves as a self-supervisory signal for test-time refinement on the fly. Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations, outperforming prior state-of-the-art motion forecasting models for out-of-distribution generalization and low-shot transfer.