Abstract:Accurately predicting renewable energy output is crucial for the efficient integration of solar and wind power into modern energy systems. This study develops and evaluates an advanced deep learning model, Channel-Time Patch Time-Series Transformer (CT-PatchTST), to forecast the power output of photovoltaic and wind energy systems using annual offshore wind power, onshore wind power, and solar power generation data from Denmark. While the original Patch Time-Series Transformer(PatchTST) model employs a channel-independent (CI) approach, it tends to overlook inter-channel relationships during training, potentially leading to a loss of critical information. To address this limitation and further leverage the benefits of increased data granularity brought by CI, we propose CT-PatchTST. This enhanced model improves the processing of inter-channel information while maintaining the advantages of the channel-independent approach. The predictive performance of CT-PatchTST is rigorously analyzed, demonstrating its ability to provide precise and reliable energy forecasts. This work contributes to improving the predictability of renewable energy systems, supporting their broader adoption and integration into energy grids.
Abstract:In computational biochemistry and biophysics, understanding the role of electrostatic interactions is crucial for elucidating the structure, dynamics, and function of biomolecules. The Poisson-Boltzmann (PB) equation is a foundational tool for modeling these interactions by describing the electrostatic potential in and around charged molecules. However, solving the PB equation presents significant computational challenges due to the complexity of biomolecular surfaces and the need to account for mobile ions. While traditional numerical methods for solving the PB equation are accurate, they are computationally expensive and scale poorly with increasing system size. To address these challenges, we introduce PBNeF, a novel machine learning approach inspired by recent advancements in neural network-based partial differential equation solvers. Our method formulates the input and boundary electrostatic conditions of the PB equation into a learnable voxel representation, enabling the use of a neural field transformer to predict the PB solution and, subsequently, the reaction field potential energy. Extensive experiments demonstrate that PBNeF achieves over a 100-fold speedup compared to traditional PB solvers, while maintaining accuracy comparable to the Generalized Born (GB) model.
Abstract:Deep learning-based methods have shown remarkable performance in single JPEG artifacts removal task. However, existing methods tend to degrade on double JPEG images, which are prevalent in real-world scenarios. To address this issue, we propose Offset-Aware Partition Transformer for double JPEG artifacts removal, termed as OAPT. We conduct an analysis of double JPEG compression that results in up to four patterns within each 8x8 block and design our model to cluster the similar patterns to remedy the difficulty of restoration. Our OAPT consists of two components: compression offset predictor and image reconstructor. Specifically, the predictor estimates pixel offsets between the first and second compression, which are then utilized to divide different patterns. The reconstructor is mainly based on several Hybrid Partition Attention Blocks (HPAB), combining vanilla window-based self-attention and sparse attention for clustered pattern features. Extensive experiments demonstrate that OAPT outperforms the state-of-the-art method by more than 0.16dB in double JPEG image restoration task. Moreover, without increasing any computation cost, the pattern clustering module in HPAB can serve as a plugin to enhance other transformer-based image restoration methods. The code will be available at https://github.com/QMoQ/OAPT.git .
Abstract:In this paper, we propose a temporal group alignment and fusion network to enhance the quality of compressed videos by using the long-short term correlations between frames. The proposed model consists of the intra-group feature alignment (IntraGFA) module, the inter-group feature fusion (InterGFF) module, and the feature enhancement (FE) module. We form the group of pictures (GoP) by selecting frames from the video according to their temporal distances to the target enhanced frame. With this grouping, the composed GoP can contain either long- or short-term correlated information of neighboring frames. We design the IntraGFA module to align the features of frames of each GoP to eliminate the motion existing between frames. We construct the InterGFF module to fuse features belonging to different GoPs and finally enhance the fused features with the FE module to generate high-quality video frames. The experimental results show that our proposed method achieves up to 0.05dB gain and lower complexity compared to the state-of-the-art method.
Abstract:The accuracy and robustness of 3D human pose estimation (HPE) are limited by 2D pose detection errors and 2D to 3D ill-posed challenges, which have drawn great attention to Multi-Hypothesis HPE research. Most existing MH-HPE methods are based on generative models, which are computationally expensive and difficult to train. In this study, we propose a Probabilistic Restoration 3D Human Pose Estimation framework (PRPose) that can be integrated with any lightweight single-hypothesis model. Specifically, PRPose employs a weakly supervised approach to fit the hidden probability distribution of the 2D-to-3D lifting process in the Single-Hypothesis HPE model and then reverse-map the distribution to the 2D pose input through an adaptive noise sampling strategy to generate reasonable multi-hypothesis samples effectively. Extensive experiments on 3D HPE benchmarks (Human3.6M and MPI-INF-3DHP) highlight the effectiveness and efficiency of PRPose. Code is available at: https://github.com/xzhouzeng/PRPose.
Abstract:Recently, numerous approaches have achieved notable success in compressed video quality enhancement (VQE). However, these methods usually ignore the utilization of valuable coding priors inherently embedded in compressed videos, such as motion vectors and residual frames, which carry abundant temporal and spatial information. To remedy this problem, we propose the Coding Priors-Guided Aggregation (CPGA) network to utilize temporal and spatial information from coding priors. The CPGA mainly consists of an inter-frame temporal aggregation (ITA) module and a multi-scale non-local aggregation (MNA) module. Specifically, the ITA module aggregates temporal information from consecutive frames and coding priors, while the MNA module globally captures spatial information guided by residual frames. In addition, to facilitate research in VQE task, we newly construct the Video Coding Priors (VCP) dataset, comprising 300 videos with various coding priors extracted from corresponding bitstreams. It remedies the shortage of previous datasets on the lack of coding information. Experimental results demonstrate the superiority of our method compared to existing state-of-the-art methods. The code and dataset will be released at https://github.com/CPGA/CPGA.git.
Abstract:The artificial intelligence (AI) system has achieved expert-level performance in electrocardiogram (ECG) signal analysis. However, in underdeveloped countries or regions where the healthcare information system is imperfect, only paper ECGs can be provided. Analysis of real-world ECG images (photos or scans of paper ECGs) remains challenging due to complex environments or interference. In this study, we present an AI system developed to detect and screen cardiac abnormalities (CAs) from real-world ECG images. The system was evaluated on a large dataset of 52,357 patients from multiple regions and populations across the world. On the detection task, the AI system obtained area under the receiver operating curve (AUC) of 0.996 (hold-out test), 0.994 (external test 1), 0.984 (external test 2), and 0.979 (external test 3), respectively. Meanwhile, the detection results of AI system showed a strong correlation with the diagnosis of cardiologists (cardiologist 1 (R=0.794, p<1e-3), cardiologist 2 (R=0.812, p<1e-3)). On the screening task, the AI system achieved AUCs of 0.894 (hold-out test) and 0.850 (external test). The screening performance of the AI system was better than that of the cardiologists (AI system (0.846) vs. cardiologist 1 (0.520) vs. cardiologist 2 (0.480)). Our study demonstrates the feasibility of an accurate, objective, easy-to-use, fast, and low-cost AI system for CA detection and screening. The system has the potential to be used by healthcare professionals, caregivers, and general users to assess CAs based on real-world ECG images.
Abstract:Image matting is a long-standing problem in computer graphics and vision, mostly identified as the accurate estimation of the foreground in input images. We argue that the foreground objects can be represented by different-level information, including the central bodies, large-grained boundaries, refined details, etc. Based on this observation, in this paper, we propose a multi-scale information assembly framework (MSIA-matte) to pull out high-quality alpha mattes from single RGB images. Technically speaking, given an input image, we extract advanced semantics as our subject content and retain initial CNN features to encode different-level foreground expression, then combine them by our well-designed information assembly strategy. Extensive experiments can prove the effectiveness of the proposed MSIA-matte, and we can achieve state-of-the-art performance compared to most existing matting networks.
Abstract:The inverse problem of inferring electrocardiogram (ECG) from photoplethysmogram (PPG) is an emerging research direction that combines the easy measurability of PPG and the rich clinical knowledge of ECG for long-term continuous cardiac monitoring. The prior art for reconstruction using a universal basis has limited fidelity for uncommon ECG waveform shapes due to the lack of rich representative power. In this paper, we design two dictionary learning frameworks, the cross-domain joint dictionary learning (XDJDL) and the label-consistent XDJDL (LC-XDJDL), to further improve the ECG inference quality and enrich the PPG-based diagnosis knowledge. Building on the K-SVD technique, our proposed joint dictionary learning frameworks aim to maximize the expressive power by optimizing simultaneously a pair of signal dictionaries for PPG and ECG with the transforms to relate their sparse codes and disease information. The proposed models are evaluated with 34,000+ ECG/PPG cycle pairs containing a variety of ECG morphologies and cardiovascular diseases. We demonstrate both visually and quantitatively that our proposed frameworks can achieve better inference performance than previous methods, suggesting an encouraging potential for ECG screening using PPG based on the proactive learned PPG-ECG relationship.
Abstract:One fundamental problem in the learning treatment effect from observational data is confounder identification and balancing. Most of the previous methods realized confounder balancing by treating all observed variables as confounders, ignoring the identification of confounders and non-confounders. In general, not all the observed variables are confounders which are the common causes of both the treatment and the outcome, some variables only contribute to the treatment and some contribute to the outcome. Balancing those non-confounders would generate additional bias for treatment effect estimation. By modeling the different relations among variables, treatment and outcome, we propose a synergistic learning framework to 1) identify and balance confounders by learning decomposed representation of confounders and non-confounders, and simultaneously 2) estimate the treatment effect in observational studies via counterfactual inference. Our empirical results demonstrate that the proposed method can precisely identify and balance confounders, while the estimation of the treatment effect performs better than the state-of-the-art methods on both synthetic and real-world datasets.