Abstract:Credit risk management within supply chains has emerged as a critical research area due to its significant implications for operational stability and financial sustainability. The intricate interdependencies among supply chain participants mean that credit risks can propagate across networks, with impacts varying by industry. This study explores the application of Generative Adversarial Networks (GANs) to enhance credit risk identification in supply chains. GANs enable the generation of synthetic credit risk scenarios, addressing challenges related to data scarcity and imbalanced datasets. By leveraging GAN-generated data, the model improves predictive accuracy while effectively capturing dynamic and temporal dependencies in supply chain data. The research focuses on three representative industries-manufacturing (steel), distribution (pharmaceuticals), and services (e-commerce) to assess industry-specific credit risk contagion. Experimental results demonstrate that the GAN-based model outperforms traditional methods, including logistic regression, decision trees, and neural networks, achieving superior accuracy, recall, and F1 scores. The findings underscore the potential of GANs in proactive risk management, offering robust tools for mitigating financial disruptions in supply chains. Future research could expand the model by incorporating external market factors and supplier relationships to further enhance predictive capabilities. Keywords- Generative Adversarial Networks (GANs); Supply Chain Risk; Credit Risk Identification; Machine Learning; Data Augmentation
Abstract:Estimating click-through rate (CTR) accurately has an essential impact on improving user experience and revenue in sponsored search. For CTR prediction model, it is necessary to make out user real-time search intention. Most of the current work is to mine their intentions based on user real-time behaviors. However, it is difficult to capture the intention when user behaviors are sparse, causing the behavior sparsity problem. Moreover, it is difficult for user to jump out of their specific historical behaviors for possible interest exploration, namely weak generalization problem. We propose a new approach Graph Intention Network (GIN) based on co-occurrence commodity graph to mine user intention. By adopting multi-layered graph diffusion, GIN enriches user behaviors to solve the behavior sparsity problem. By introducing co-occurrence relationship of commodities to explore the potential preferences, the weak generalization problem is also alleviated. To the best of our knowledge, the GIN method is the first to introduce graph learning for user intention mining in CTR prediction and propose end-to-end joint training of graph learning and CTR prediction tasks in sponsored search. At present, GIN has achieved excellent offline results on the real-world data of the e-commerce platform outperforming existing deep learning models, and has been running stable tests online and achieved significant CTR improvements.