Abstract:We propose compleX-PINN, a novel physics-informed neural network (PINN) architecture that incorporates a learnable activation function inspired by Cauchy integral theorem. By learning the parameters of the activation function, compleX-PINN achieves high accuracy with just a single hidden layer. Empirical results show that compleX-PINN effectively solves problems where traditional PINNs struggle and consistently delivers significantly higher precision, often by an order of magnitude.
Abstract:XNet is a single-layer neural network architecture that leverages Cauchy integral-based activation functions for high-order function approximation. Through theoretical analysis, we show that the Cauchy activation functions used in XNet can achieve arbitrary-order polynomial convergence, fundamentally outperforming traditional MLPs and Kolmogorov-Arnold Networks (KANs) that rely on increased depth or B-spline activations. Our extensive experiments on function approximation, PDE solving, and reinforcement learning demonstrate XNet's superior performance - reducing approximation error by up to 50000 times and accelerating training by up to 10 times compared to existing approaches. These results establish XNet as a highly efficient architecture for both scientific computing and AI applications.
Abstract:We have developed a novel activation function, named the Cauchy Activation Function. This function is derived from the Cauchy Integral Theorem in complex analysis and is specifically tailored for problems requiring high precision. This innovation has led to the creation of a new class of neural networks, which we call (Comple)XNet, or simply XNet. We will demonstrate that XNet is particularly effective for high-dimensional challenges such as image classification and solving Partial Differential Equations (PDEs). Our evaluations show that XNet significantly outperforms established benchmarks like MNIST and CIFAR-10 in computer vision, and offers substantial advantages over Physics-Informed Neural Networks (PINNs) in both low-dimensional and high-dimensional PDE scenarios.