Abstract:Reasoning is fundamental to human intelligence, and critical for problem-solving, decision-making, and critical thinking. Reasoning refers to drawing new conclusions based on existing knowledge, which can support various applications like clinical diagnosis, basic education, and financial analysis. Though a good number of surveys have been proposed for reviewing reasoning-related methods, none of them has systematically investigated these methods from the viewpoint of their dependent knowledge base. Both the scenarios to which the knowledge bases are applied and their storage formats are significantly different. Hence, investigating reasoning methods from the knowledge base perspective helps us better understand the challenges and future directions. To fill this gap, this paper first classifies the knowledge base into symbolic and parametric ones. The former explicitly stores information in human-readable symbols, and the latter implicitly encodes knowledge within parameters. Then, we provide a comprehensive overview of reasoning methods using symbolic knowledge bases, parametric knowledge bases, and both of them. Finally, we identify the future direction toward enhancing reasoning capabilities to bridge the gap between human and machine intelligence.
Abstract:Toxicity detection is crucial for maintaining the peace of the society. While existing methods perform well on normal toxic contents or those generated by specific perturbation methods, they are vulnerable to evolving perturbation patterns. However, in real-world scenarios, malicious users tend to create new perturbation patterns for fooling the detectors. For example, some users may circumvent the detector of large language models (LLMs) by adding `I am a scientist' at the beginning of the prompt. In this paper, we introduce a novel problem, i.e., continual learning jailbreak perturbation patterns, into the toxicity detection field. To tackle this problem, we first construct a new dataset generated by 9 types of perturbation patterns, 7 of them are summarized from prior work and 2 of them are developed by us. We then systematically validate the vulnerability of current methods on this new perturbation pattern-aware dataset via both the zero-shot and fine tuned cross-pattern detection. Upon this, we present the domain incremental learning paradigm and the corresponding benchmark to ensure the detector's robustness to dynamically emerging types of perturbed toxic text. Our code and dataset are provided in the appendix and will be publicly available at GitHub, by which we wish to offer new research opportunities for the security-relevant communities.
Abstract:Despite the rapid progress that existing automated feedback methods have made in correcting the output of large language models (LLMs), these methods cannot be well applied to the relation extraction (RE) task due to their designated feedback objectives and correction manner. To address this problem, we propose a novel automated feedback framework for RE, which presents a rationale supervisor to verify the rationale and provide re-selected demonstrations as feedback to correct the initial prediction. Specifically, we first design a causal intervention and observation method for to collect biased/unbiased rationales for contrastive training the rationale supervisor. Then, we present a verification-feedback-correction procedure to iteratively enhance LLMs' capability of handling the RE task. Extensive experiments prove that our proposed framework significantly outperforms existing methods.
Abstract:In recent years, origin-destination (OD) demand prediction has gained significant attention for its profound implications in urban development. Existing data-driven deep learning methods primarily focus on the spatial or temporal dependency between regions yet neglecting regions' fundamental functional difference. Though knowledge-driven physical methods have characterised regions' functions by their radiation and attraction capacities, these functions are defined on numerical factors like population without considering regions' intrinsic nominal attributes, e.g., a region is a residential or industrial district. Moreover, the complicated relationships between two types of capacities, e.g., the radiation capacity of a residential district in the morning will be transformed into the attraction capacity in the evening, are totally missing from physical methods. In this paper, we not only generalize the physical radiation and attraction capacities into the deep learning framework with the extended capability to fulfil regions' functions, but also present a new model that captures the relationships between two types of capacities. Specifically, we first model regions' radiation and attraction capacities using a bilateral branch network, each equipped with regions' attribute representations. We then describe the transformation relationship of different capacities of the same region using a hypergraph-based parameter generation method. We finally unveil the competition relationship of different regions with the same attraction capacity through cluster-based adversarial learning. Extensive experiments on two datasets demonstrate the consistent improvements of our method over the state-of-the-art baselines, as well as the good explainability of regions' functions using their nominal attributes.
Abstract:Emotion recognition in conversation, which aims to predict the emotion for all utterances, has attracted considerable research attention in recent years. It is a challenging task since the recognition of the emotion in one utterance involves many complex factors, such as the conversational context, the speaker's background, and the subtle difference between emotion labels. In this paper, we propose a novel framework which mimics the thinking process when modeling these factors. Specifically, we first comprehend the conversational context with a history-oriented prompt to selectively gather information from predecessors of the target utterance. We then model the speaker's background with an experience-oriented prompt to retrieve the similar utterances from all conversations. We finally differentiate the subtle label semantics with a paraphrasing mechanism to elicit the intrinsic label related knowledge. We conducted extensive experiments on three benchmarks. The empirical results demonstrate the superiority of our proposed framework over the state-of-the-art baselines.
Abstract:Large language models (LLMs) have demonstrated remarkable performance in a range of natural language understanding and generation tasks. Yet, their ability to generate counterfactuals, which can be used for areas like data augmentation, remains under-explored. This study aims to investigate the counterfactual generation capabilities of LLMs and analysis factors that influence this ability. First, we evaluate how effective are LLMs in counterfactual generation through data augmentation experiments for small language models (SLMs) across four tasks: sentiment analysis, natural language inference, named entity recognition, and relation extraction. While LLMs show promising enhancements in various settings, they struggle in complex tasks due to their self-limitations and the lack of logical guidance to produce counterfactuals that align with commonsense. Second, our analysis reveals the pivotal role of providing accurate task definitions and detailed step-by-step instructions to LLMs in generating counterfactuals. Interestingly, we also find that LLMs can generate reasonable counterfactuals even with unreasonable demonstrations, which illustrates that demonstrations are primarily to regulate the output format.This study provides the first comprehensive insight into counterfactual generation abilities of LLMs, and offers a novel perspective on utilizing LLMs for data augmentation to enhance SLMs.
Abstract:The zero-shot relation triplet extraction (ZeroRTE) task aims to extract relation triplets from a piece of text with unseen relation types. The seminal work adopts the pre-trained generative model to generate synthetic samples for new relations. However, current generative models lack the optimization process of model generalization on different tasks during training, and thus have limited generalization capability. For this reason, we propose a novel generative meta-learning framework which exploits the `learning-to-learn' ability of meta-learning to boost the generalization capability of generative models. Specifically, we first design a task-aware generative model which can learn the general knowledge by forcing the optimization process to be conducted across multiple tasks. Based on it, we then present three generative meta-learning approaches designated for three typical meta-learning categories. Extensive experimental results demonstrate that our framework achieves a new state-of-the-art performance for the ZeroRTE task.
Abstract:Despite the recent success achieved by several two-stage prototypical networks in few-shot named entity recognition (NER) task, the over-detected false spans at span detection stage and the inaccurate and unstable prototypes at type classification stage remain to be challenging problems. In this paper, we propose a novel Type-Aware Decomposed framework, namely TadNER, to solve these problems. We first present a type-aware span filtering strategy to filter out false spans by removing those semantically far away from type names. We then present a type-aware contrastive learning strategy to construct more accurate and stable prototypes by jointly exploiting support samples and type names as references. Extensive experiments on various benchmarks prove that our proposed TadNER framework yields a new state-of-the-art performance.
Abstract:The goal of relation classification (RC) is to extract the semantic relations between/among entities in the text. As a fundamental task in natural language processing, it is crucial to ensure the robustness of RC models. Despite the high accuracy current deep neural models have achieved in RC tasks, they are easily affected by spurious correlations. One solution to this problem is to train the model with counterfactually augmented data (CAD) such that it can learn the causation rather than the confounding. However, no attempt has been made on generating counterfactuals for RC tasks. In this paper, we formulate the problem of automatically generating CAD for RC tasks from an entity-centric viewpoint, and develop a novel approach to derive contextual counterfactuals for entities. Specifically, we exploit two elementary topological properties, i.e., the centrality and the shortest path, in syntactic and semantic dependency graphs, to first identify and then intervene on the contextual causal features for entities. We conduct a comprehensive evaluation on four RC datasets by combining our proposed approach with a variety of backbone RC models. The results demonstrate that our approach not only improves the performance of the backbones, but also makes them more robust in the out-of-domain test.
Abstract:Lack of labeled data is a main obstacle in relation extraction. Semi-supervised relation extraction (SSRE) has been proven to be a promising way for this problem through annotating unlabeled samples as additional training data. Almost all prior researches along this line adopt multiple models to make the annotations more reliable by taking the intersection set of predicted results from these models. However, the difference set, which contains rich information about unlabeled data, has been long neglected by prior studies. In this paper, we propose to learn not only from the consensus but also the disagreement among different models in SSRE. To this end, we develop a simple and general multi-teacher distillation (MTD) framework, which can be easily integrated into any existing SSRE methods. Specifically, we first let the teachers correspond to the multiple models and select the samples in the intersection set of the last iteration in SSRE methods to augment labeled data as usual. We then transfer the class distributions for samples in the difference set as soft labels to guide the student. We finally perform prediction using the trained student model. Experimental results on two public datasets demonstrate that our framework significantly promotes the performance of the base SSRE methods with pretty low computational cost.