The zero-shot relation triplet extraction (ZeroRTE) task aims to extract relation triplets from a piece of text with unseen relation types. The seminal work adopts the pre-trained generative model to generate synthetic samples for new relations. However, current generative models lack the optimization process of model generalization on different tasks during training, and thus have limited generalization capability. For this reason, we propose a novel generative meta-learning framework which exploits the `learning-to-learn' ability of meta-learning to boost the generalization capability of generative models. Specifically, we first design a task-aware generative model which can learn the general knowledge by forcing the optimization process to be conducted across multiple tasks. Based on it, we then present three generative meta-learning approaches designated for three typical meta-learning categories. Extensive experimental results demonstrate that our framework achieves a new state-of-the-art performance for the ZeroRTE task.