Abstract:Language-guided robotic grasping is a rapidly advancing field where robots are instructed using human language to grasp specific objects. However, existing methods often depend on dense camera views and struggle to quickly update scenes, limiting their effectiveness in changeable environments. In contrast, we propose SparseGrasp, a novel open-vocabulary robotic grasping system that operates efficiently with sparse-view RGB images and handles scene updates fastly. Our system builds upon and significantly enhances existing computer vision modules in robotic learning. Specifically, SparseGrasp utilizes DUSt3R to generate a dense point cloud as the initialization for 3D Gaussian Splatting (3DGS), maintaining high fidelity even under sparse supervision. Importantly, SparseGrasp incorporates semantic awareness from recent vision foundation models. To further improve processing efficiency, we repurpose Principal Component Analysis (PCA) to compress features from 2D models. Additionally, we introduce a novel render-and-compare strategy that ensures rapid scene updates, enabling multi-turn grasping in changeable environments. Experimental results show that SparseGrasp significantly outperforms state-of-the-art methods in terms of both speed and adaptability, providing a robust solution for multi-turn grasping in changeable environment.
Abstract:This paper investigates the task of the open-ended interactive robotic manipulation on table-top scenarios. While recent Large Language Models (LLMs) enhance robots' comprehension of user instructions, their lack of visual grounding constrains their ability to physically interact with the environment. This is because the robot needs to locate the target object for manipulation within the physical workspace. To this end, we introduce an interactive robotic manipulation framework called Polaris, which integrates perception and interaction by utilizing GPT-4 alongside grounded vision models. For precise manipulation, it is essential that such grounded vision models produce detailed object pose for the target object, rather than merely identifying pixels belonging to them in the image. Consequently, we propose a novel Synthetic-to-Real (Syn2Real) pose estimation pipeline. This pipeline utilizes rendered synthetic data for training and is then transferred to real-world manipulation tasks. The real-world performance demonstrates the efficacy of our proposed pipeline and underscores its potential for extension to more general categories. Moreover, real-robot experiments have showcased the impressive performance of our framework in grasping and executing multiple manipulation tasks. This indicates its potential to generalize to scenarios beyond the tabletop. More information and video results are available here: https://star-uu-wang.github.io/Polaris/