Theory NEC Lab., RWCP
Abstract:Fine-tuning has emerged as a critical process in leveraging Large Language Models (LLMs) for specific downstream tasks, enabling these models to achieve state-of-the-art performance across various domains. However, the fine-tuning process often involves sensitive datasets, introducing privacy risks that exploit the unique characteristics of this stage. In this paper, we provide a comprehensive survey of privacy challenges associated with fine-tuning LLMs, highlighting vulnerabilities to various privacy attacks, including membership inference, data extraction, and backdoor attacks. We further review defense mechanisms designed to mitigate privacy risks in the fine-tuning phase, such as differential privacy, federated learning, and knowledge unlearning, discussing their effectiveness and limitations in addressing privacy risks and maintaining model utility. By identifying key gaps in existing research, we highlight challenges and propose directions to advance the development of privacy-preserving methods for fine-tuning LLMs, promoting their responsible use in diverse applications.
Abstract:The proportion of elderly people is increasing worldwide, particularly those living alone in Japan. As elderly people get older, their risks of physical disabilities and health issues increase. To automatically discover these issues at a low cost in daily life, sensor-based detection in a smart home is promising. As part of the effort towards early detection of abnormal behaviors, we propose a simulator-based detection systems for six typical anomalies: being semi-bedridden, being housebound, forgetting, wandering, fall while walking and fall while standing. Our detection system can be customized for various room layout, sensor arrangement and resident's characteristics by training detection classifiers using the simulator with the parameters fitted to individual cases. Considering that the six anomalies that our system detects have various occurrence durations, such as being housebound for weeks or lying still for seconds after a fall, the detection classifiers of our system produce anomaly labels depending on each anomaly's occurrence duration, e.g., housebound per day and falls per second. We propose a method that standardizes the processing of sensor data, and uses a simple detection approach. Although the validity depends on the realism of the simulation, numerical evaluations using sensor data that includes a variety of resident behavior patterns over nine years as test data show that (1) the methods for detecting wandering and falls are comparable to previous methods, and (2) the methods for detecting being semi-bedridden, being housebound, and forgetting achieve a sensitivity of over 0.9 with fewer than one false alarm every 50 days.
Abstract:In this paper, we consider the low rank structure of the reward sequence of the pure exploration problems. Firstly, we propose the separated setting in pure exploration problem, where the exploration strategy cannot receive the feedback of its explorations. Due to this separation, it requires that the exploration strategy to sample the arms obliviously. By involving the kernel information of the reward vectors, we provide efficient algorithms for both time-varying and fixed cases with regret bound $O(d\sqrt{(\ln N)/n})$. Then, we show the lower bound to the pure exploration in multi-armed bandits with low rank sequence. There is an $O(\sqrt{\ln N})$ gap between our upper bound and the lower bound.
Abstract:We propose a query learning algorithm for ordered multi-terminal binary decision diagrams (OMTBDDs) using at most n equivalence and 2n(l\lcei\log_2 m\rceil+ 3n) membership queries by extending the algorithm for ordered binary decision diagrams (OBDDs). Tightness of our upper bounds is checked in our experiments using synthetically generated target OMTBDDs. Possibility of applying our algorithm to classification problems is also indicated in our other experiments using datasets of UCI Machine Learning Repository.
Abstract:Classification bandits are multi-armed bandit problems whose task is to classify a given set of arms into either positive or negative class depending on whether the rate of the arms with the expected reward of at least h is not less than w for given thresholds h and w. We study a special classification bandit problem in which arms correspond to points x in d-dimensional real space with expected rewards f(x) which are generated according to a Gaussian process prior. We develop a framework algorithm for the problem using various arm selection policies and propose policies called FCB and FTSV. We show a smaller sample complexity upper bound for FCB than that for the existing algorithm of the level set estimation, in which whether f(x) is at least h or not must be decided for every arm's x. Arm selection policies depending on an estimated rate of arms with rewards of at least h are also proposed and shown to improve empirical sample complexity. According to our experimental results, the rate-estimation versions of FCB and FTSV, together with that of the popular active learning policy that selects the point with the maximum variance, outperform other policies for synthetic functions, and the version of FTSV is also the best performer for our real-world dataset.
Abstract:We study the problem of sharing as many branching conditions of a given forest classifier or regressor as possible while keeping classification performance. As a constraint for preventing from accuracy degradation, we first consider the one that the decision paths of all the given feature vectors must not change. For a branching condition that a value of a certain feature is at most a given threshold, the set of values satisfying such constraint can be represented as an interval. Thus, the problem is reduced to the problem of finding the minimum set intersecting all the constraint-satisfying intervals for each set of branching conditions on the same feature. We propose an algorithm for the original problem using an algorithm solving this problem efficiently. The constraint is relaxed later to promote further sharing of branching conditions by allowing decision path change of a certain ratio of the given feature vectors or allowing a certain number of non-intersected constraint-satisfying intervals. We also extended our algorithm for both the relaxations. The effectiveness of our method is demonstrated through comprehensive experiments using 21 datasets (13 classification and 8 regression datasets in UCI machine learning repository) and 4 classifiers/regressors (random forest, extremely randomized trees, AdaBoost and gradient boosting).
Abstract:Slimmable Neural Networks (S-Net) is a novel network which enabled to select one of the predefined proportions of channels (sub-network) dynamically depending on the current computational resource availability. The accuracy of each sub-network on S-Net, however, is inferior to that of individually trained networks of the same size due to its difficulty of simultaneous optimization on different sub-networks. In this paper, we propose Slimmable Pruned Neural Networks (SP-Net), which has sub-network structures learned by pruning instead of adopting structures with the same proportion of channels in each layer (width multiplier) like S-Net, and we also propose new pruning procedures: multi-base pruning instead of one-shot or iterative pruning to realize high accuracy and huge training time saving. We also introduced slimmable channel sorting (scs) to achieve calculation as fast as S-Net and zero padding match (zpm) pruning to prune residual structure in more efficient way. SP-Net can be combined with any kind of channel pruning methods and does not require any complicated processing or time-consuming architecture search like NAS models. Compared with each sub-network of the same FLOPs on S-Net, SP-Net improves accuracy by 1.2-1.5% for ResNet-50, 0.9-4.4% for VGGNet, 1.3-2.7% for MobileNetV1, 1.4-3.1% for MobileNetV2 on ImageNet. Furthermore, our methods outperform other SOTA pruning methods and are on par with various NAS models according to our experimental results on ImageNet. The code is available at https://github.com/hideakikuratsu/SP-Net.
Abstract:Various things propagate through the medium of individuals. Some biological cells fire right after the firing of their neighbor cells, and such firing propagates from cells to cells. In this paper, we study the problem of estimating the firing propagation order of cells from the $\{0,1 \}$-state sequences of all the cells, where '1' at the $i$-th position means the firing state of the cell at time step $i$. We propose a method to estimate the propagation direction between cells by the sum of one cell's time delay of the matched positions from the other cell averaged over the minimum cost alignments and show how to calculate it efficiently. The propagation order estimated by our proposed method is demonstrated to be correct for our synthetic datasets, and also to be consistent with visually recognizable firing order for the dataset of soil-dwelling amoeba's chemical signal emitting state sequences.
Abstract:We study a bad arm existing checking problem in which a player's task is to judge whether a positive arm exists or not among given K arms by drawing as small number of arms as possible. Here, an arm is positive if its expected loss suffered by drawing the arm is at least a given threshold. This problem is a formalization of diagnosis of disease or machine failure. An interesting structure of this problem is the asymmetry of positive and negative (non-positive) arms' roles; finding one positive arm is enough to judge existence while all the arms must be discriminated as negative to judge non-existence. We propose an algorithms with arm selection policy (policy to determine the next arm to draw) and stopping condition (condition to stop drawing arms) utilizing this asymmetric problem structure and prove its effectiveness theoretically and empirically.
Abstract:Monte Carlo tree search (MCTS) has received considerable interest due to its spectacular success in the difficult problem of computer Go and also proved beneficial in a range of other domains. A major issue that has received little attention in the MCTS literature is the fact that, in most games, different actions can lead to the same state, that may lead to a high degree of redundancy in tree representation and unnecessary additional computational cost. We extend MCTS to single rooted directed acyclic graph (SR-DAG), and consider the Best Arm Identification (BAI) and the Best Leaf Identification (BLI) problem of an expanding SR-DAG of arbitrary depth. We propose algorithms that are (epsilon, delta)-correct in the fixed confidence setting, and prove an asymptotic upper bounds of sample complexity for our BAI algorithm. As a major application for our BLI algorithm, a novel approach for Feature Selection is proposed by representing the feature set space as a SR-DAG and repeatedly evaluating feature subsets until a candidate for the best leaf is returned, a proof of concept is shown on benchmark data sets.