Abstract:Learning a reward model (RM) from human preferences has been an important component in aligning large language models (LLMs). The canonical setup of learning RMs from pairwise preference data is rooted in the classic Bradley-Terry (BT) model that accepts binary feedback, i.e., the label being either Response 1 is better than Response 2, or the opposite. Such a setup inevitably discards potentially useful samples (such as "tied" between the two responses) and loses more fine-grained information (such as "slightly better"). In this paper, we propose a framework for learning RMs under ordinal feedback which generalizes the case of binary preference feedback to any arbitrary granularity. Specifically, we first identify a marginal unbiasedness condition, which generalizes the assumption of the BT model in the existing binary feedback setting. The condition validates itself via the sociological concept of the wisdom of the crowd. Under the condition, we develop a natural probability model for pairwise preference data under ordinal feedback and analyze its properties. We prove the statistical benefits of ordinal feedback in terms of reducing the Rademacher complexity compared to the case of binary feedback. The proposed learning objective and the theory also extend to hinge loss and direct policy optimization (DPO). In particular, the theoretical analysis may be of independent interest when applying to a seemingly unrelated problem of knowledge distillation to interpret the bias-variance trade-off therein. The framework also sheds light on writing guidance for human annotators. Our numerical experiments validate that fine-grained feedback leads to better reward learning for both in-distribution and out-of-distribution settings. Further experiments show that incorporating a certain proportion of samples with tied preference boosts RM learning.
Abstract:Predicting simple function classes has been widely used as a testbed for developing theory and understanding of the trained Transformer's in-context learning (ICL) ability. In this paper, we revisit the training of Transformers on linear regression tasks, and different from all the existing literature, we consider a bi-objective prediction task of predicting both the conditional expectation $\mathbb{E}[Y|X]$ and the conditional variance Var$(Y|X)$. This additional uncertainty quantification objective provides a handle to (i) better design out-of-distribution experiments to distinguish ICL from in-weight learning (IWL) and (ii) make a better separation between the algorithms with and without using the prior information of the training distribution. Theoretically, we show that the trained Transformer reaches near Bayes-optimum, suggesting the usage of the information of the training distribution. Our method can be extended to other cases. Specifically, with the Transformer's context window $S$, we prove a generalization bound of $\tilde{\mathcal{O}}(\sqrt{\min\{S, T\}/(n T)})$ on $n$ tasks with sequences of length $T$, providing sharper analysis compared to previous results of $\tilde{\mathcal{O}}(\sqrt{1/n})$. Empirically, we illustrate that while the trained Transformer behaves as the Bayes-optimal solution as a natural consequence of supervised training in distribution, it does not necessarily perform a Bayesian inference when facing task shifts, in contrast to the \textit{equivalence} between these two proposed in many existing literature. We also demonstrate the trained Transformer's ICL ability over covariates shift and prompt-length shift and interpret them as a generalization over a meta distribution.
Abstract:In this paper, we consider the supervised pretrained transformer for a class of sequential decision-making problems. The class of considered problems is a subset of the general formulation of reinforcement learning in that there is no transition probability matrix, and the class of problems covers bandits, dynamic pricing, and newsvendor problems as special cases. Such a structure enables the use of optimal actions/decisions in the pretraining phase, and the usage also provides new insights for the training and generalization of the pretrained transformer. We first note that the training of the transformer model can be viewed as a performative prediction problem, and the existing methods and theories largely ignore or cannot resolve the arisen out-of-distribution issue. We propose a natural solution that includes the transformer-generated action sequences in the training procedure, and it enjoys better properties both numerically and theoretically. The availability of the optimal actions in the considered tasks also allows us to analyze the properties of the pretrained transformer as an algorithm and explains why it may lack exploration and how this can be automatically resolved. Numerically, we categorize the advantages of the pretrained transformer over the structured algorithms such as UCB and Thompson sampling into three cases: (i) it better utilizes the prior knowledge in the pretraining data; (ii) it can elegantly handle the misspecification issue suffered by the structured algorithms; (iii) for short time horizon such as $T\le50$, it behaves more greedy and enjoys much better regret than the structured algorithms which are designed for asymptotic optimality.
Abstract:Large language models (LLMs) are highly capable of many tasks but they can sometimes generate unreliable or inaccurate outputs. To tackle this issue, this paper studies the problem of uncertainty estimation and calibration for LLMs. We begin by formulating the uncertainty estimation problem for LLMs and then propose a supervised approach that takes advantage of the labeled datasets and estimates the uncertainty of the LLMs' responses. Based on the formulation, we illustrate the difference between the uncertainty estimation for LLMs and that for standard ML models and explain why the hidden activations of the LLMs contain uncertainty information. Our designed approach effectively demonstrates the benefits of utilizing hidden activations for enhanced uncertainty estimation across various tasks and shows robust transferability in out-of-distribution settings. Moreover, we distinguish the uncertainty estimation task from the uncertainty calibration task and show that a better uncertainty estimation mode leads to a better calibration performance. In practice, our method is easy to implement and is adaptable to different levels of model transparency including black box, grey box, and white box, each demonstrating strong performance based on the accessibility of the LLM's internal mechanisms.
Abstract:In this paper, we study the problem of watermarking large language models (LLMs). We consider the trade-off between model distortion and detection ability and formulate it as a constrained optimization problem based on the green-red algorithm of Kirchenbauer et al. (2023a). We show that the optimal solution to the optimization problem enjoys a nice analytical property which provides a better understanding and inspires the algorithm design for the watermarking process. We develop an online dual gradient ascent watermarking algorithm in light of this optimization formulation and prove its asymptotic Pareto optimality between model distortion and detection ability. Such a result guarantees an averaged increased green list probability and henceforth detection ability explicitly (in contrast to previous results). Moreover, we provide a systematic discussion on the choice of the model distortion metrics for the watermarking problem. We justify our choice of KL divergence and present issues with the existing criteria of ``distortion-free'' and perplexity. Finally, we empirically evaluate our algorithms on extensive datasets against benchmark algorithms.
Abstract:Discrete-choice models, such as Multinomial Logit, Probit, or Mixed-Logit, are widely used in Marketing, Economics, and Operations Research: given a set of alternatives, the customer is modeled as choosing one of the alternatives to maximize a (latent) utility function. However, extending such models to situations where the customer chooses more than one item (such as in e-commerce shopping) has proven problematic. While one can construct reasonable models of the customer's behavior, estimating such models becomes very challenging because of the combinatorial explosion in the number of possible subsets of items. In this paper we develop a transformer neural network architecture, the Transformer Choice Net, that is suitable for predicting multiple choices. Transformer networks turn out to be especially suitable for this task as they take into account not only the features of the customer and the items but also the context, which in this case could be the assortment as well as the customer's past choices. On a range of benchmark datasets, our architecture shows uniformly superior out-of-sample prediction performance compared to the leading models in the literature, without requiring any custom modeling or tuning for each instance.
Abstract:Electrifying heavy-duty trucks offers a substantial opportunity to curtail carbon emissions, advancing toward a carbon-neutral future. However, the inherent challenges of limited battery energy and the sheer weight of heavy-duty trucks lead to reduced mileage and prolonged charging durations. Consequently, battery-swapping services emerge as an attractive solution for these trucks. This paper employs a two-fold approach to investigate the potential and enhance the efficacy of such services. Firstly, spatial-temporal demand prediction models are adopted to predict the traffic patterns for the upcoming hours. Subsequently, the prediction guides an optimization module for efficient battery allocation and deployment. Analyzing the heavy-duty truck data on a highway network spanning over 2,500 miles, our model and analysis underscore the value of prediction/machine learning in facilitating future decision-makings. In particular, we find that the initial phase of implementing battery-swapping services favors mobile battery-swapping stations, but as the system matures, fixed-location stations are preferred.
Abstract:As artificial intelligence (AI) systems play an increasingly prominent role in human decision-making, challenges surface in the realm of human-AI interactions. One challenge arises from the suboptimal AI policies due to the inadequate consideration of humans disregarding AI recommendations, as well as the need for AI to provide advice selectively when it is most pertinent. This paper presents a sequential decision-making model that (i) takes into account the human's adherence level (the probability that the human follows/rejects machine advice) and (ii) incorporates a defer option so that the machine can temporarily refrain from making advice. We provide learning algorithms that learn the optimal advice policy and make advice only at critical time stamps. Compared to problem-agnostic reinforcement learning algorithms, our specialized learning algorithms not only enjoy better theoretical convergence properties but also show strong empirical performance.
Abstract:Discrete-choice models are used in economics, marketing and revenue management to predict customer purchase probabilities, say as a function of prices and other features of the offered assortment. While they have been shown to be expressive, capturing customer heterogeneity and behaviour, they are also hard to estimate, often based on many unobservables like utilities; and moreover, they still fail to capture many salient features of customer behaviour. A natural question then, given their success in other contexts, is if neural networks can eliminate the necessity of carefully building a context-dependent customer behaviour model and hand-coding and tuning the estimation. It is unclear however how one would incorporate assortment effects into such a neural network, and also how one would optimize the assortment with such a black-box generative model of choice probabilities. In this paper we investigate first whether a single neural network architecture can predict purchase probabilities for datasets from various contexts and generated under various models and assumptions. Next, we develop an assortment optimization formulation that is solvable by off-the-shelf integer programming solvers. We compare against a variety of benchmark discrete-choice models on simulated as well as real-world datasets, developing training tricks along the way to make the neural network prediction and subsequent optimization robust and comparable in performance to the alternates.
Abstract:Uncertainty sampling is a prevalent active learning algorithm that queries sequentially the annotations of data samples which the current prediction model is uncertain about. However, the usage of uncertainty sampling has been largely heuristic: (i) There is no consensus on the proper definition of "uncertainty" for a specific task under a specific loss; (ii) There is no theoretical guarantee that prescribes a standard protocol to implement the algorithm, for example, how to handle the sequentially arrived annotated data under the framework of optimization algorithms such as stochastic gradient descent. In this work, we systematically examine uncertainty sampling algorithms under both stream-based and pool-based active learning. We propose a notion of equivalent loss which depends on the used uncertainty measure and the original loss function and establish that an uncertainty sampling algorithm essentially optimizes against such an equivalent loss. The perspective verifies the properness of existing uncertainty measures from two aspects: surrogate property and loss convexity. Furthermore, we propose a new notion for designing uncertainty measures called \textit{loss as uncertainty}. The idea is to use the conditional expected loss given the features as the uncertainty measure. Such an uncertainty measure has nice analytical properties and generality to cover both classification and regression problems, which enable us to provide the first generalization bound for uncertainty sampling algorithms under both stream-based and pool-based settings, in the full generality of the underlying model and problem. Lastly, we establish connections between certain variants of the uncertainty sampling algorithms with risk-sensitive objectives and distributional robustness, which can partly explain the advantage of uncertainty sampling algorithms when the sample size is small.