Recommender systems need to optimize various types of user feedback, e.g., clicks, likes, and shares. A typical recommender system handling multiple types of feedback has two components: a multi-task learning (MTL) module, predicting feedback such as click-through rate and like rate; and a multi-task fusion (MTF) module, integrating these predictions into a single score for item ranking. MTF is essential for ensuring user satisfaction, as it directly influences recommendation outcomes. Recently, reinforcement learning (RL) has been applied to MTF tasks to improve long-term user satisfaction. However, existing RL-based MTF methods are formula-based methods, which only adjust limited coefficients within pre-defined formulas. The pre-defined formulas restrict the RL search space and become a bottleneck for MTF. To overcome this, we propose a formula-free MTF framework. We demonstrate that any suitable fusion function can be expressed as a composition of single-variable monotonic functions, as per the Sprecher Representation Theorem. Leveraging this, we introduce a novel learnable monotonic fusion cell (MFC) to replace pre-defined formulas. We call this new MFC-based model eXtreme MTF (xMTF). Furthermore, we employ a two-stage hybrid (TSH) learning strategy to train xMTF effectively. By expanding the MTF search space, xMTF outperforms existing methods in extensive offline and online experiments.