Abstract:The ever-growing demand for higher data rates in optical communication systems necessitates the development of advanced modulation formats capable of significantly enhancing system performance. In this work, we propose a novel modulation format derived from the Kramers--Kronig relations. This scheme effectively reduces the complexity of digital filtering and alleviates the demands on the digital-to-analog converter, offering a practical solution for high speed optical communication. The proposed modulation format was rigorously validated through experimental investigations using an optical wireless link. The results demonstrate a notable improvement in bit error rate (BER) performance and receiver sensitivity compared to PAM-4 and CAP-16 modulation schemes, with enhancements of 0.6 dB and 1.5 dB in receiver sensitivity, respectively. These improvements enable higher data transmission rates, positioning the Kramers--Kronig relations-based modulation format as a promising alternative to existing modulation techniques. Its potential to enhance the efficiency and capacity of optical communication systems is clearly evident. Future work will focus on extending its application to more complex scenarios, such as high-speed underwater optical communication systems, where advanced modulation formats are critical for overcoming bandwidth limitations.