The pinching-antenna system (PASS) introduces new degrees of freedom (DoFs) for physical layer security (PLS) through pinching beamforming. In this paper, a couple of scenarios for secure beamforming for PASS are studied. 1) For the case with a single legitimate user (Bob) and a single eavesdropper (Eve), a closed-form expression for the optimal baseband beamformer is derived. On this basis, a gradient-based method is proposed to optimize the activated positions of pinching antennas (PAs). 2) For the case with multiple Bobs and multiple Eves, a fractional programming (FP)-based block coordinate descent (BCD) algorithm, termed FP-BCD, is proposed for optimizing the weighted secrecy sum-rate (WSSR). Specifically, a closed-form baseband beamformer is obtained via Lagrange multiplier method. Furthermore, owing to the non-convex objective function exhibiting numerous stationary points, a low-complexity one-dimensional search is used to find a high-quality solution of the PAs' activated locations. Numerical results are provided to demonstrate that: i) All proposed algorithms achieve stable convergence within a few iterations, ii) across all considered power ranges, the FP-BCD algorithm outperforms baseline methods using zero-forcing (ZF) and maximal-ratio transmission (MRT) beamforming in terms of the WSSR, and iii) PASS achieves a significantly higher secrecy rate than traditional fixed-antenna systems.