Abstract:A novel frequency diverse array (FDA)-assisted secure transmission framework is proposed, which leverages additional frequency offsets to enhance physical layer security. Specifically, an FDA-assisted wiretap channel is considered, where the transmit beamforming and frequency offsets at each antenna are jointly optimized. A novel alternating optimization-based method is introduced to address the non-convex problem of secure transmission, focusing on minimizing transmit power and maximizing the secrecy rate. Numerical results are provided to demonstrate the superiority of the FDA-based framework compared to systems employing traditional phased array antennas in secure transmission.
Abstract:A novel movable antenna (MA)-aided secure transmission framework is proposed to enhance the secrecy transmission rate without relying on the eavesdropper's channel state information. Within this framework, a joint beamforming and jamming scheme is proposed, where the power of the confidential signal is minimized by optimizing the positions of the MAs, and the residual power is used to jam the eavesdropper. An efficient gradient-based method is employed to solve this non-convex problem. Numerical results are provided to demonstrate the superiority of the MA-based framework over systems using traditional fixed-position antennas in secure transmission.
Abstract:A continuous-aperture array (CAPA)-based secure transmission framework is proposed to enhance physical layer security. Continuous current distributions, or beamformers, are designed to maximize the secrecy transmission rate under a power constraint and to minimize the required transmission power for achieving a specific target secrecy rate. On this basis, the fundamental secrecy performance limits achieved by CAPAs are analyzed by deriving closed-form expressions for the maximum secrecy rate (MSR) and minimum required power (MRP), along with the corresponding optimal current distributions. To provide further insights, asymptotic analyses are performed for the MSR and MRP, which reveals that i) for the MSR, the optimal current distribution simplifies to maximal ratio transmission (MRT) beamforming in the low-SNR regime and to zero-forcing (ZF) beamforming in the high-SNR regime; i) for the MRP, the optimal current distribution simplifies to ZF beamforming in the high-SNR regime. The derived results are specialized to the typical array structures, e.g., planar CAPAs and planar spatially discrete arrays (SPDAs). The rate and power scaling laws are further analyzed by assuming an infinitely large CAPA. Numerical results demonstrate that: i) the proposed secure continuous beamforming design outperforms MRT and ZF beamforming in terms of both achievable secrecy rate and power efficiency; ii) CAPAs achieve superior secrecy performance compared to conventional SPDAs.
Abstract:The performance of linear receive beamforming in continuous aperture array (CAPA)-based uplink communications is analyzed. Continuous linear beamforming techniques are proposed for CAPA receivers under the criteria of maximum-ratio combining (MRC), zero-forcing (ZF), and minimum mean-square error (MMSE). i) For MRC beamforming, a closed-form expression for the beamformer is derived to maximize per-user signal power, and the achieved uplink rate and mean-square error (MSE) in detecting received data symbols are analyzed. ii) For ZF beamforming, a closed-form beamformer is derived using channel correlation to eliminate interference, with a function space interpretation demonstrating its optimality in maximizing signal power while ensuring zero inter-user interference. iii) For MMSE beamforming, it is proven to be the optimal linear receive approach for CAPAs in terms of maximizing per-user rate and minimizing MSE. A closed-form expression for the MMSE beamformer is then derived, along with the achievable sum-rate and sum-MSE. The proposed linear beamforming techniques are then compared with those for conventional spatially discrete arrays (SPDAs). Analytical and numerical results indicate that: i) for both CAPAs and SPDAs, the considered linear beamformers can be represented as weighted sums of each user's spatial response, with weights determined by channel correlation; ii) CAPAs achieve higher sum-rates and lower sum-MSEs than SPDAs under ZF and MMSE beamforming; and iii) SPDAs may outperform CAPAs with MRC beamforming in interference-dominated scenarios.
Abstract:The performance of multiplexing and diversity achieved by continuous aperture arrays (CAPAs) over fading channels is analyzed. Angular-domain fading models are derived for CAPA-based multiple-input single-output (MISO), single-input multiple-output (SIMO), and multiple-input multiple-output (MIMO) channels using the Fourier relationship between the spatial response and its angular-domain counterpart. Building on these models, angular-domain transmission frameworks are proposed to facilitate CAPA-based communications, under which the performance of multiplexing and diversity is analyzed. 1) For SIMO and MISO channels, closed-form expressions are derived for the average data rate (ADR) and outage probability (OP). Additionally, asymptotic analyses are performed in the high signal-to-noise ratio (SNR) regime to unveil the maximal multiplexing gain and maximal diversity gain. The diversity-multiplexing trade-off (DMT) is also characterized, along with the array gain within the DMT framework. 2) For MIMO channels, high-SNR approximations are derived for the ADR and OP, based on which the DMT and associated array gain are revealed. The performance of CAPAs is further compared with that of conventional spatially discrete arrays (SPDAs) to highlight the superiority of CAPAs. The analytical and numerical results demonstrate that: i) compared to SPDAs, CAPAs achieve a lower OP and higher ADR, resulting in better spectral efficiency; ii) CAPAs achieve the same DMT as SPDAs with half-wavelength antenna spacing while attaining a larger array gain; and iii) CAPAs achieve a better DMT than SPDAs with antenna spacing greater than half a wavelength.
Abstract:The secrecy performance in both near-field and far-field communications is analyzed using two fundamental metrics: the secrecy capacity under a power constraint and the minimum power requirement to achieve a specified secrecy rate target. 1) For the secrecy capacity, a closed-form expression is derived under a discrete-time memoryless setup. This expression is further analyzed under several far-field and near-field channel models, and the capacity scaling law is revealed by assuming an infinitely large transmit array and an infinitely high power. A novel concept of "depth of insecurity" is proposed to evaluate the secrecy performance achieved by near-field beamfocusing. It is demonstrated that increasing the number of transmit antennas reduces this depth and thus improves the secrecy performance. 2) Regarding the minimum required power, a closed-form expression is derived and analyzed within far-field and near-field scenarios. Asymptotic analyses are performed by setting the number of transmit antennas to infinity to unveil the power scaling law. Numerical results are provided to demonstrate that: i) compared to far-field communications, near-field communications expand the areas where secure transmission is feasible, specifically when the eavesdropper is located in the same direction as the intended receiver; ii) as the number of transmit antennas increases, neither the secrecy capacity nor the minimum required power scales or vanishes unboundedly, adhering to the principle of energy conservation.
Abstract:The capacity limits of continuous-aperture array (CAPA)-based wireless communications are characterized. To this end, an analytically tractable transmission framework is established for both uplink and downlink CAPA systems. Based on this framework, closed-form expressions for the single-user channel capacity are derived. The results are further extended to a multiuser case by characterizing the capacity limits of a two-user channel and proposing the associated capacity-achieving decoding and encoding schemes. 1) For the uplink case, the sum-rate capacity and capacity region, as well as the capacity-achieving detectors, are derived. 2) For the downlink case, the uplink-downlink duality is established by deriving the uplink-to-downlink and downlink-to-uplink transformations under the same power constraint, based on which the optimal power allocation policy and the achieved sum-rate capacity and capacity region are characterized. To gain further insights, several case studies are presented by specializing the derived results into various array structures, including the planar CAPA, linear CAPA, and planar spatially discrete array (SPDA). Numerical results are provided to reveal that: i) the channel capacity achieved by CAPAs converges towards a finite upper bound as the aperture size increases; and ii) CAPAs offer significant capacity gains over the conventional SPDAs.
Abstract:The concept of aperture selection is proposed for continuous aperture array (CAPA)-based communications. The achieved performance is analyzed in an uplink scenario by considering both line-of-sight (LoS) and non-line-of-sight (NLoS) scenarios. In the LoS scenario, the optimal selection strategy is demonstrated to follow the nearest neighbor criterion, and the resulting signal-to-noise ratio (SNR) is analyzed. In the NLoS scenario, the achieved outage probability along with the diversity order is revealed. Numerical results are provided to demonstrate that aperture selection effectively maintains satisfactory performance by leveraging selection diversity while simultaneously reducing the implementation complexity of CAPAs.
Abstract:The performance of continuous aperture array (CAPA)-based wireless communications is analyzed in an uplink scenario. An analytical framework is proposed to characterize uplink CAPA-based transmission using electromagnetic field theories. On this basis, new expressions are derived for the channel capacity in a single-user scenario and the sum-rate capacity in a multiuser scenario, along with the capacity-achieving decoding schemes. These findings are proved to differ greatly from those established for conventional spatially discrete (SPD) arrays. Numerical results are provided to demonstrate that CAPA offers significant capacity gains compared to the SPD array.
Abstract:The near-field channel gain is analyzed by considering both radiating and reactive components of the electromagnetic field. Novel expressions are derived for the channel gains of spatially-discrete (SPD) and continuous-aperture (CAP) arrays, which are more accurate than conventional results that neglect the reactive region. To gain further insights, asymptotic analyses are carried out in the large aperture size, based on which the impact of the reactive region is discussed. It is proved that for both SPD and CAP arrays, the impact of the reactive region on near-field channel gain is negligible, even as the array aperture size approaches infinity.