The performance of linear receive beamforming in continuous aperture array (CAPA)-based uplink communications is analyzed. Continuous linear beamforming techniques are proposed for CAPA receivers under the criteria of maximum-ratio combining (MRC), zero-forcing (ZF), and minimum mean-square error (MMSE). i) For MRC beamforming, a closed-form expression for the beamformer is derived to maximize per-user signal power, and the achieved uplink rate and mean-square error (MSE) in detecting received data symbols are analyzed. ii) For ZF beamforming, a closed-form beamformer is derived using channel correlation to eliminate interference, with a function space interpretation demonstrating its optimality in maximizing signal power while ensuring zero inter-user interference. iii) For MMSE beamforming, it is proven to be the optimal linear receive approach for CAPAs in terms of maximizing per-user rate and minimizing MSE. A closed-form expression for the MMSE beamformer is then derived, along with the achievable sum-rate and sum-MSE. The proposed linear beamforming techniques are then compared with those for conventional spatially discrete arrays (SPDAs). Analytical and numerical results indicate that: i) for both CAPAs and SPDAs, the considered linear beamformers can be represented as weighted sums of each user's spatial response, with weights determined by channel correlation; ii) CAPAs achieve higher sum-rates and lower sum-MSEs than SPDAs under ZF and MMSE beamforming; and iii) SPDAs may outperform CAPAs with MRC beamforming in interference-dominated scenarios.