Abstract:The rapid evolution of large language models (LLMs) and their capacity to simulate human cognition and behavior has given rise to LLM-based frameworks and tools that are evaluated and applied based on their ability to perform tasks traditionally performed by humans, namely those involving cognition, decision-making, and social interaction. This survey provides a comprehensive examination of such human-centric LLM capabilities, focusing on their performance in both individual tasks (where an LLM acts as a stand-in for a single human) and collective tasks (where multiple LLMs coordinate to mimic group dynamics). We first evaluate LLM competencies across key areas including reasoning, perception, and social cognition, comparing their abilities to human-like skills. Then, we explore real-world applications of LLMs in human-centric domains such as behavioral science, political science, and sociology, assessing their effectiveness in replicating human behaviors and interactions. Finally, we identify challenges and future research directions, such as improving LLM adaptability, emotional intelligence, and cultural sensitivity, while addressing inherent biases and enhancing frameworks for human-AI collaboration. This survey aims to provide a foundational understanding of LLMs from a human-centric perspective, offering insights into their current capabilities and potential for future development.
Abstract:The concept of world models has garnered significant attention due to advancements in multimodal large language models such as GPT-4 and video generation models such as Sora, which are central to the pursuit of artificial general intelligence. This survey offers a comprehensive review of the literature on world models. Generally, world models are regarded as tools for either understanding the present state of the world or predicting its future dynamics. This review presents a systematic categorization of world models, emphasizing two primary functions: (1) constructing internal representations to understand the mechanisms of the world, and (2) predicting future states to simulate and guide decision-making. Initially, we examine the current progress in these two categories. We then explore the application of world models in key domains, including autonomous driving, robotics, and social simulacra, with a focus on how each domain utilizes these aspects. Finally, we outline key challenges and provide insights into potential future research directions.
Abstract:Filter bubbles have been studied extensively within the context of online content platforms due to their potential to cause undesirable outcomes such as user dissatisfaction or polarization. With the rise of short-video platforms, the filter bubble has been given extra attention because these platforms rely on an unprecedented use of the recommender system to provide relevant content. In our work, we investigate the deep filter bubble, which refers to the user being exposed to narrow content within their broad interests. We accomplish this using one-year interaction data from a top short-video platform in China, which includes hierarchical data with three levels of categories for each video. We formalize our definition of a "deep" filter bubble within this context, and then explore various correlations within the data: first understanding the evolution of the deep filter bubble over time, and later revealing some of the factors that give rise to this phenomenon, such as specific categories, user demographics, and feedback type. We observe that while the overall proportion of users in a filter bubble remains largely constant over time, the depth composition of their filter bubble changes. In addition, we find that some demographic groups that have a higher likelihood of seeing narrower content and implicit feedback signals can lead to less bubble formation. Finally, we propose some ways in which recommender systems can be designed to reduce the risk of a user getting caught in a bubble.