Abstract:Spatio-temporal graph (STG) learning is foundational for smart city applications, yet it is often hindered by data scarcity in many cities and regions. To bridge this gap, we propose a novel generative pre-training framework, GPDiff, for STG transfer learning. Unlike conventional approaches that heavily rely on common feature extraction or intricate transfer learning designs, our solution takes a novel approach by performing generative pre-training on a collection of model parameters optimized with data from source cities. We recast STG transfer learning as pre-training a generative hypernetwork, which generates tailored model parameters guided by prompts, allowing for adaptability to diverse data distributions and city-specific characteristics. GPDiff employs a diffusion model with a transformer-based denoising network, which is model-agnostic to integrate with powerful STG models. By addressing challenges arising from data gaps and the complexity of generalizing knowledge across cities, our framework consistently outperforms state-of-the-art baselines on multiple real-world datasets for tasks such as traffic speed prediction and crowd flow prediction. The implementation of our approach is available: https://github.com/PLUTO-SCY/GPDiff.
Abstract:Human mobility behaviours are closely linked to various important societal problems such as traffic congestion, and epidemic control. However, collecting mobility data can be prohibitively expensive and involves serious privacy issues, posing a pressing need for high-quality generative mobility models. Previous efforts focus on learning the behaviour distribution from training samples, and generate new mobility data by sampling the learned distributions. They cannot effectively capture the coherent intentions that drive mobility behavior, leading to low sample efficiency and semantic-awareness. Inspired by the emergent reasoning ability in LLMs, we propose a radical perspective shift that reformulates mobility generation as a commonsense reasoning problem. In this paper, we design a novel Mobility Generation as Reasoning (MobiGeaR) framework that prompts LLM to recursively generate mobility behaviour. Specifically, we design a context-aware chain-of-thoughts prompting technique to align LLMs with context-aware mobility behaviour by few-shot in-context learning. Besides, MobiGeaR employ a divide-and-coordinate mechanism to exploit the synergistic effect between LLM reasoning and mechanistic gravity model. It leverages the step-by-step LLM reasoning to recursively generate a temporal template of activity intentions, which are then mapped to physical locations with a mechanistic gravity model. Experiments on two real-world datasets show MobiGeaR achieves state-of-the-art performance across all metrics, and substantially reduces the size of training samples at the same time. Besides, MobiGeaR also significantly improves the semantic-awareness of mobility generation by improving the intention accuracy by 62.23% and the generated mobility data is proven effective in boosting the performance of downstream applications. The implementation of our approach is available in the paper.
Abstract:Spatio-temporal point process (STPP) is a stochastic collection of events accompanied with time and space. Due to computational complexities, existing solutions for STPPs compromise with conditional independence between time and space, which consider the temporal and spatial distributions separately. The failure to model the joint distribution leads to limited capacities in characterizing the spatio-temporal entangled interactions given past events. In this work, we propose a novel parameterization framework for STPPs, which leverages diffusion models to learn complex spatio-temporal joint distributions. We decompose the learning of the target joint distribution into multiple steps, where each step can be faithfully described by a Gaussian distribution. To enhance the learning of each step, an elaborated spatio-temporal co-attention module is proposed to capture the interdependence between the event time and space adaptively. For the first time, we break the restrictions on spatio-temporal dependencies in existing solutions, and enable a flexible and accurate modeling paradigm for STPPs. Extensive experiments from a wide range of fields, such as epidemiology, seismology, crime, and urban mobility, demonstrate that our framework outperforms the state-of-the-art baselines remarkably, with an average improvement of over 50%. Further in-depth analyses validate its ability to capture spatio-temporal interactions, which can learn adaptively for different scenarios. The datasets and source code are available online: https://github.com/tsinghua-fib-lab/Spatio-temporal-Diffusion-Point-Processes.