Abstract:Human mobility behaviours are closely linked to various important societal problems such as traffic congestion, and epidemic control. However, collecting mobility data can be prohibitively expensive and involves serious privacy issues, posing a pressing need for high-quality generative mobility models. Previous efforts focus on learning the behaviour distribution from training samples, and generate new mobility data by sampling the learned distributions. They cannot effectively capture the coherent intentions that drive mobility behavior, leading to low sample efficiency and semantic-awareness. Inspired by the emergent reasoning ability in LLMs, we propose a radical perspective shift that reformulates mobility generation as a commonsense reasoning problem. In this paper, we design a novel Mobility Generation as Reasoning (MobiGeaR) framework that prompts LLM to recursively generate mobility behaviour. Specifically, we design a context-aware chain-of-thoughts prompting technique to align LLMs with context-aware mobility behaviour by few-shot in-context learning. Besides, MobiGeaR employ a divide-and-coordinate mechanism to exploit the synergistic effect between LLM reasoning and mechanistic gravity model. It leverages the step-by-step LLM reasoning to recursively generate a temporal template of activity intentions, which are then mapped to physical locations with a mechanistic gravity model. Experiments on two real-world datasets show MobiGeaR achieves state-of-the-art performance across all metrics, and substantially reduces the size of training samples at the same time. Besides, MobiGeaR also significantly improves the semantic-awareness of mobility generation by improving the intention accuracy by 62.23% and the generated mobility data is proven effective in boosting the performance of downstream applications. The implementation of our approach is available in the paper.