Abstract:The rapid advancement of Vision-Language Models (VLMs) has significantly advanced the development of Embodied Question Answering (EQA), enhancing agents' abilities in language understanding and reasoning within complex and realistic scenarios. However, EQA in real-world scenarios remains challenging, as human-posed questions often contain noise that can interfere with an agent's exploration and response, bringing challenges especially for language beginners and non-expert users. To address this, we introduce a NoisyEQA benchmark designed to evaluate an agent's ability to recognize and correct noisy questions. This benchmark introduces four common types of noise found in real-world applications: Latent Hallucination Noise, Memory Noise, Perception Noise, and Semantic Noise generated through an automated dataset creation framework. Additionally, we also propose a 'Self-Correction' prompting mechanism and a new evaluation metric to enhance and measure both noise detection capability and answer quality. Our comprehensive evaluation reveals that current EQA agents often struggle to detect noise in questions, leading to responses that frequently contain erroneous information. Through our Self-Correct Prompting mechanism, we can effectively improve the accuracy of agent answers.
Abstract:Dataset Distillation (DD) seeks to create a condensed dataset that, when used to train a model, enables the model to achieve performance similar to that of a model trained on the entire original dataset. It relieves the model training from processing massive data and thus reduces the computation resources, storage, and time costs. This paper illustrates our solution that ranks 1st in the ECCV-2024 Data Distillation Challenge (track 1). Our solution, Modified Difficulty-Aligned Trajectory Matching (M-DATM), introduces two key modifications to the original state-of-the-art method DATM: (1) the soft labels learned by DATM do not achieve one-to-one correspondence with the counterparts generated by the official evaluation script, so we remove the soft labels technique to alleviate such inconsistency; (2) since the removal of soft labels makes it harder for the synthetic dataset to learn late trajectory information, particularly on Tiny ImageNet, we reduce the matching range, allowing the synthetic data to concentrate more on the easier patterns. In the final evaluation, our M-DATM achieved accuracies of 0.4061 and 0.1831 on the CIFAR-100 and Tiny ImageNet datasets, ranking 1st in the Fixed Images Per Class (IPC) Track.