Abstract:Accurate and real-time object detection is crucial for anomaly behavior detection, especially in scenarios constrained by hardware limitations, where balancing accuracy and speed is essential for enhancing detection performance. This study proposes a model called HGO-YOLO, which integrates the HGNetv2 architecture into YOLOv8. This combination expands the receptive field and captures a wider range of features while simplifying model complexity through GhostConv. We introduced a lightweight detection head, OptiConvDetect, which utilizes parameter sharing to construct the detection head effectively. Evaluation results show that the proposed algorithm achieves a mAP@0.5 of 87.4% and a recall rate of 81.1%, with a model size of only 4.6 MB and a frame rate of 56 FPS on the CPU. HGO-YOLO not only improves accuracy by 3.0% but also reduces computational load by 51.69% (from 8.9 GFLOPs to 4.3 GFLOPs), while increasing the frame rate by a factor of 1.7. Additionally, real-time tests were conducted on Raspberry Pi4 and NVIDIA platforms. These results indicate that the HGO-YOLO model demonstrates superior performance in anomaly behavior detection.
Abstract:A policy knowledge graph can provide decision support for tasks such as project compliance, policy analysis, and intelligent question answering, and can also serve as an external knowledge base to assist the reasoning process of related large language models. Although there have been many related works on knowledge graphs, there is currently a lack of research on the construction methods of policy knowledge graphs. This paper, focusing on the forestry field, designs a complete policy knowledge graph construction framework, including: firstly, proposing a fine-grained forestry policy domain ontology; then, proposing an unsupervised policy information extraction method, and finally, constructing a complete forestry policy knowledge graph. The experimental results show that the proposed ontology has good expressiveness and extensibility, and the policy information extraction method proposed in this paper achieves better results than other unsupervised methods. Furthermore, by analyzing the application of the knowledge graph in the retrieval-augmented-generation task of the large language models, the practical application value of the knowledge graph in the era of large language models is confirmed. The knowledge graph resource will be released on an open-source platform and can serve as the basic knowledge base for forestry policy-related intelligent systems. It can also be used for academic research. In addition, this study can provide reference and guidance for the construction of policy knowledge graphs in other fields.
Abstract:Large Language Models (LLMs) demonstrate substantial potential in delivering legal consultation services to users without a legal background, attributed to their superior text comprehension and generation capabilities. Nonetheless, existing Chinese legal LLMs limit interaction to a single model-user dialogue, unlike the collaborative consultations typical of law firms, where multiple staff members contribute to a single consultation. This limitation prevents an authentic consultation experience. Additionally, extant Chinese legal LLMs suffer from critical limitations: (1) insufficient control over the quality of instruction fine-tuning data; (2) increased model hallucination resulting from users' ambiguous queries; and (3) a reduction in the model's ability to follow instructions over multiple dialogue turns. In response to these challenges, we propose a novel legal dialogue framework that leverages the collaborative capabilities of multiple LLM agents, termed LawLuo. This framework encompasses four agents: a receptionist, a lawyer, a secretary, and a boss, each responsible for different functionalities, collaboratively providing a comprehensive legal consultation to users. Additionally, we constructed two high-quality legal dialogue datasets, KINLED and MURLED, and fine-tuned ChatGLM-3-6b using these datasets. We propose a legal query clarification algorithm called ToLC. Experimental results demonstrate that LawLuo outperforms baseline LLMs, including GPT-4, across three dimensions: lawyer-like language style, the usefulness of legal advice, and the accuracy of legal knowledge. Our code and datasets are available at https://github.com/NEFUJing/LawLuo.