Abstract:Public health reasoning requires population level inference grounded in scientific evidence, expert consensus, and safety constraints. However, it remains underexplored as a structured machine learning problem with limited supervised signals and benchmarks. We introduce \textbf{GlobalHealthAtlas}, a large scale multilingual dataset of 280,210 instances spanning 15 public health domains and 17 languages, stratified into three difficulty levels from health literacy to epidemiological and policy reasoning. Instances are derived from openly available public health sources and labeled by language, domain, and difficulty to support supervised learning and slice based evaluation. We further propose large language model (LLM) assisted construction and quality control pipeline with retrieval, duplication, evidence grounding checks, and label validation to improve consistency at scale. Finally, we present a domain aligned evaluator distilled from high confidence judgments of diverse LLMs to assess outputs along six dimensions: Accuracy, Reasoning, Completeness, Consensus Alignment, Terminology Norms, and Insightfulness. Together, these contributions enable reproducible training and evaluation of LLMs for safety critical public health reasoning beyond conventional QA benchmarks.
Abstract:Agentic large language model (LLM) systems rely on external memory for long-horizon state and concurrent multi-agent execution, but centralized indexes and heuristic partitions become bottlenecks as memory volume and parallel access grow. We present ShardMemo, a budgeted tiered memory service with Tier A per-agent working state, Tier B sharded evidence with shard-local approximate nearest neighbor (ANN) indexes, and Tier C, a versioned skill library. Tier B enforces scope-before-routing: structured eligibility constraints mask ineligible shards before routing or ANN search. We cast shard probing as masked mixture-of-experts (MoE) routing over eligible shards, probing up to $B_{\mathrm{probe}}$ shards via Top-$B_{\mathrm{probe}}$ or adaptive Top-$P$, and use cost-aware gating over profile/observation/session shard families; the router is trained from evidence-to-shard supervision. On LoCoMo, ShardMemo improves over the strongest baseline (GAM) by +5.11 to +6.82 F1 across question categories. Under a fixed-budget routing setting ($B_{\mathrm{probe}}=3$), ShardMemo improves over cosine-to-prototype shard routing by +6.87 F1 while reducing retrieval work (VecScan 521->414, -20.5%) and p95 latency (95->76 ms). On long-context HotpotQA, ShardMemo achieves 63.41/61.88/57.95 F1 at 56K/224K/448K tokens. On ToolBench, Tier C reaches 0.97 Precision@3 and 1.94 StepRed (+10.2% and +7.2% over embedding-similarity retrieval).
Abstract:Recent advances in large language models (LLMs) have enabled AI agents to autonomously generate scientific proposals, conduct experiments, author papers, and perform peer reviews. Yet this flood of AI-generated research content collides with a fragmented and largely closed publication ecosystem. Traditional journals and conferences rely on human peer review, making them difficult to scale and often reluctant to accept AI-generated research content; existing preprint servers (e.g. arXiv) lack rigorous quality-control mechanisms. Consequently, a significant amount of high-quality AI-generated research lacks appropriate venues for dissemination, hindering its potential to advance scientific progress. To address these challenges, we introduce aiXiv, a next-generation open-access platform for human and AI scientists. Its multi-agent architecture allows research proposals and papers to be submitted, reviewed, and iteratively refined by both human and AI scientists. It also provides API and MCP interfaces that enable seamless integration of heterogeneous human and AI scientists, creating a scalable and extensible ecosystem for autonomous scientific discovery. Through extensive experiments, we demonstrate that aiXiv is a reliable and robust platform that significantly enhances the quality of AI-generated research proposals and papers after iterative revising and reviewing on aiXiv. Our work lays the groundwork for a next-generation open-access ecosystem for AI scientists, accelerating the publication and dissemination of high-quality AI-generated research content. Code is available at https://github.com/aixiv-org. Website is available at https://forms.gle/DxQgCtXFsJ4paMtn8.
Abstract:Metaphorical expressions are abundant in Traditional Chinese Medicine (TCM), conveying complex disease mechanisms and holistic health concepts through culturally rich and often abstract terminology. Bridging these metaphors to anatomically driven Western medical (WM) concepts poses significant challenges for both automated language processing and real-world clinical practice. To address this gap, we propose a novel multi-agent and chain-of-thought (CoT) framework designed to interpret TCM metaphors accurately and map them to WM pathophysiology. Specifically, our approach combines domain-specialized agents (TCM Expert, WM Expert) with a Coordinator Agent, leveraging stepwise chain-of-thought prompts to ensure transparent reasoning and conflict resolution. We detail a methodology for building a metaphor-rich TCM dataset, discuss strategies for effectively integrating multi-agent collaboration and CoT reasoning, and articulate the theoretical underpinnings that guide metaphor interpretation across distinct medical paradigms. We present a comprehensive system design and highlight both the potential benefits and limitations of our approach, while leaving placeholders for future experimental validation. Our work aims to support clinical decision-making, cross-system educational initiatives, and integrated healthcare research, ultimately offering a robust scaffold for reconciling TCM's symbolic language with the mechanistic focus of Western medicine.




Abstract:Large Language Models (LLMs) demonstrate substantial potential in delivering legal consultation services to users without a legal background, attributed to their superior text comprehension and generation capabilities. Nonetheless, existing Chinese legal LLMs limit interaction to a single model-user dialogue, unlike the collaborative consultations typical of law firms, where multiple staff members contribute to a single consultation. This limitation prevents an authentic consultation experience. Additionally, extant Chinese legal LLMs suffer from critical limitations: (1) insufficient control over the quality of instruction fine-tuning data; (2) increased model hallucination resulting from users' ambiguous queries; and (3) a reduction in the model's ability to follow instructions over multiple dialogue turns. In response to these challenges, we propose a novel legal dialogue framework that leverages the collaborative capabilities of multiple LLM agents, termed LawLuo. This framework encompasses four agents: a receptionist, a lawyer, a secretary, and a boss, each responsible for different functionalities, collaboratively providing a comprehensive legal consultation to users. Additionally, we constructed two high-quality legal dialogue datasets, KINLED and MURLED, and fine-tuned ChatGLM-3-6b using these datasets. We propose a legal query clarification algorithm called ToLC. Experimental results demonstrate that LawLuo outperforms baseline LLMs, including GPT-4, across three dimensions: lawyer-like language style, the usefulness of legal advice, and the accuracy of legal knowledge. Our code and datasets are available at https://github.com/NEFUJing/LawLuo.