Abstract:Accurate forecasting of the electrical load, such as the magnitude and the timing of peak power, is crucial to successful power system management and implementation of smart grid strategies like demand response and peak shaving. In multi-time-scale optimization scheduling, rolling optimization is a common solution. However, rolling optimization needs to consider the coupling of different optimization objectives across time scales. It is challenging to accurately capture the mid- and long-term dependencies in time series data. This paper proposes Multi-pofo, a multi-scale power load forecasting framework, that captures such dependency via a novel architecture equipped with a temporal positional encoding layer. To validate the effectiveness of the proposed model, we conduct experiments on real-world electricity load data. The experimental results show that our approach outperforms compared to several strong baseline methods.
Abstract:Heat, Ventilation and Air Conditioning (HVAC) systems play a critical role in maintaining a comfortable thermal environment and cost approximately 40% of primary energy usage in the building sector. For smart energy management in buildings, usage patterns and their resulting profiles allow the improvement of control systems with prediction capabilities. However, for large-scale HVAC system management, it is difficult to construct a detailed model for each subsystem. In this paper, a new data-driven room temperature prediction model is proposed based on the k-means clustering method. The proposed data-driven temperature prediction approach extracts the system operation feature through historical data analysis and further simplifies the system-level model to improve generalization and computational efficiency. We evaluate the proposed approach in the real world. The results demonstrated that our approach can significantly reduce modeling time without reducing prediction accuracy.
Abstract:The large amount of data collected in buildings makes energy management smarter and more energy efficient. This study proposes a design and implementation methodology of data-driven heating, ventilation, and air conditioning (HVAC) control. Building thermodynamics is modeled using a symbolic regression model (SRM) built from the collected data. Additionally, an HVAC system model is also developed with a data-driven approach. A model predictive control (MPC) based HVAC scheduling is formulated with the developed models to minimize energy consumption and peak power demand and maximize thermal comfort. The performance of the proposed framework is demonstrated in the workspace in the actual campus building. The HVAC system using the proposed framework reduces the peak power by 16.1\% compared to the widely used thermostat controller.