Abstract:As Autonomous driving systems (ADS) have transformed our daily life, safety of ADS is of growing significance. While various testing approaches have emerged to enhance the ADS reliability, a crucial gap remains in understanding the accidents causes. Such post-accident analysis is paramount and beneficial for enhancing ADS safety and reliability. Existing cyber-physical system (CPS) root cause analysis techniques are mainly designed for drones and cannot handle the unique challenges introduced by more complex physical environments and deep learning models deployed in ADS. In this paper, we address the gap by offering a formal definition of ADS root cause analysis problem and introducing ROCAS, a novel ADS root cause analysis framework featuring cyber-physical co-mutation. Our technique uniquely leverages both physical and cyber mutation that can precisely identify the accident-trigger entity and pinpoint the misconfiguration of the target ADS responsible for an accident. We further design a differential analysis to identify the responsible module to reduce search space for the misconfiguration. We study 12 categories of ADS accidents and demonstrate the effectiveness and efficiency of ROCAS in narrowing down search space and pinpointing the misconfiguration. We also show detailed case studies on how the identified misconfiguration helps understand rationale behind accidents.
Abstract:Human-Oriented Binary Reverse Engineering (HOBRE) lies at the intersection of binary and source code, aiming to lift binary code to human-readable content relevant to source code, thereby bridging the binary-source semantic gap. Recent advancements in uni-modal code model pre-training, particularly in generative Source Code Foundation Models (SCFMs) and binary understanding models, have laid the groundwork for transfer learning applicable to HOBRE. However, existing approaches for HOBRE rely heavily on uni-modal models like SCFMs for supervised fine-tuning or general LLMs for prompting, resulting in sub-optimal performance. Inspired by recent progress in large multi-modal models, we propose that it is possible to harness the strengths of uni-modal code models from both sides to bridge the semantic gap effectively. In this paper, we introduce a novel probe-and-recover framework that incorporates a binary-source encoder-decoder model and black-box LLMs for binary analysis. Our approach leverages the pre-trained knowledge within SCFMs to synthesize relevant, symbol-rich code fragments as context. This additional context enables black-box LLMs to enhance recovery accuracy. We demonstrate significant improvements in zero-shot binary summarization and binary function name recovery, with a 10.3% relative gain in CHRF and a 16.7% relative gain in a GPT4-based metric for summarization, as well as a 6.7% and 7.4% absolute increase in token-level precision and recall for name recovery, respectively. These results highlight the effectiveness of our approach in automating and improving binary code analysis.
Abstract:Backdoor attack poses a significant security threat to Deep Learning applications. Existing attacks are often not evasive to established backdoor detection techniques. This susceptibility primarily stems from the fact that these attacks typically leverage a universal trigger pattern or transformation function, such that the trigger can cause misclassification for any input. In response to this, recent papers have introduced attacks using sample-specific invisible triggers crafted through special transformation functions. While these approaches manage to evade detection to some extent, they reveal vulnerability to existing backdoor mitigation techniques. To address and enhance both evasiveness and resilience, we introduce a novel backdoor attack LOTUS. Specifically, it leverages a secret function to separate samples in the victim class into a set of partitions and applies unique triggers to different partitions. Furthermore, LOTUS incorporates an effective trigger focusing mechanism, ensuring only the trigger corresponding to the partition can induce the backdoor behavior. Extensive experimental results show that LOTUS can achieve high attack success rate across 4 datasets and 7 model structures, and effectively evading 13 backdoor detection and mitigation techniques. The code is available at https://github.com/Megum1/LOTUS.
Abstract:Transformer based code models have impressive performance in many software engineering tasks. However, their effectiveness degrades when symbols are missing or not informative. The reason is that the model may not learn to pay attention to the right correlations/contexts without the help of symbols. We propose a new method to pre-train general code models when symbols are lacking. We observe that in such cases, programs degenerate to something written in a very primitive language. We hence propose to use program analysis to extract contexts a priori (instead of relying on symbols and masked language modeling as in vanilla models). We then leverage a novel attention masking method to only allow the model attending to these contexts, e.g., bi-directional program dependence transitive closures and token co-occurrences. In the meantime, the inherent self-attention mechanism is utilized to learn which of the allowed attentions are more important compared to others. To realize the idea, we enhance the vanilla tokenization and model architecture of a BERT model, construct and utilize attention masks, and introduce a new pre-training algorithm. We pre-train this BERT-like model from scratch, using a dataset of 26 million stripped binary functions with explicit program dependence information extracted by our tool. We apply the model in three downstream tasks: binary similarity, type inference, and malware family classification. Our pre-trained model can improve the SOTAs in these tasks from 53% to 64%, 49% to 60%, and 74% to 94%, respectively. It also substantially outperforms other general pre-training techniques of code understanding models.
Abstract:Dataflow analysis is a powerful code analysis technique that reasons dependencies between program values, offering support for code optimization, program comprehension, and bug detection. Existing approaches require the successful compilation of the subject program and customizations for downstream applications. This paper introduces LLMDFA, an LLM-powered dataflow analysis framework that analyzes arbitrary code snippets without requiring a compilation infrastructure and automatically synthesizes downstream applications. Inspired by summary-based dataflow analysis, LLMDFA decomposes the problem into three sub-problems, which are effectively resolved by several essential strategies, including few-shot chain-of-thought prompting and tool synthesis. Our evaluation has shown that the design can mitigate the hallucination and improve the reasoning ability, obtaining high precision and recall in detecting dataflow-related bugs upon benchmark programs, outperforming state-of-the-art (classic) tools, including a very recent industrial analyzer.
Abstract:Generative large language models (LLMs) pre-trained on code have shown impressive effectiveness in code generation, program repair, and document analysis. However, existing generative LLMs focus on source code and are not specialized for binaries. There are three main challenges for LLMs to model and learn binary code: hex-decimal values, complex global dependencies, and compiler optimization levels. To bring the benefit of LLMs to the binary domain, we develop Nova and Nova$^+$, which are LLMs pre-trained on binary corpora. Nova is pre-trained with the standard language modeling task, showing significantly better capability on five benchmarks for three downstream tasks: binary code similarity detection (BCSD), binary code translation (BCT), and binary code recovery (BCR), over GPT-3.5 and other existing techniques. We build Nova$^+$ to further boost Nova using two new pre-training tasks, i.e., optimization generation and optimization level prediction, which are designed to learn binary optimization and align equivalent binaries. Nova$^+$ shows overall the best performance for all three downstream tasks on five benchmarks, demonstrating the contributions of the new pre-training tasks.
Abstract:Self-supervised learning in computer vision trains on unlabeled data, such as images or (image, text) pairs, to obtain an image encoder that learns high-quality embeddings for input data. Emerging backdoor attacks towards encoders expose crucial vulnerabilities of self-supervised learning, since downstream classifiers (even further trained on clean data) may inherit backdoor behaviors from encoders. Existing backdoor detection methods mainly focus on supervised learning settings and cannot handle pre-trained encoders especially when input labels are not available. In this paper, we propose DECREE, the first backdoor detection approach for pre-trained encoders, requiring neither classifier headers nor input labels. We evaluate DECREE on over 400 encoders trojaned under 3 paradigms. We show the effectiveness of our method on image encoders pre-trained on ImageNet and OpenAI's CLIP 400 million image-text pairs. Our method consistently has a high detection accuracy even if we have only limited or no access to the pre-training dataset.
Abstract:Deep Learning backdoor attacks have a threat model similar to traditional cyber attacks. Attack forensics, a critical counter-measure for traditional cyber attacks, is hence of importance for defending model backdoor attacks. In this paper, we propose a novel model backdoor forensics technique. Given a few attack samples such as inputs with backdoor triggers, which may represent different types of backdoors, our technique automatically decomposes them to clean inputs and the corresponding triggers. It then clusters the triggers based on their properties to allow automatic attack categorization and summarization. Backdoor scanners can then be automatically synthesized to find other instances of the same type of backdoor in other models. Our evaluation on 2,532 pre-trained models, 10 popular attacks, and comparison with 9 baselines show that our technique is highly effective. The decomposed clean inputs and triggers closely resemble the ground truth. The synthesized scanners substantially outperform the vanilla versions of existing scanners that can hardly generalize to different kinds of attacks.