Abstract:Determining whether multiple instructions can access the same memory location is a critical task in binary analysis. It is challenging as statically computing precise alias information is undecidable in theory. The problem aggravates at the binary level due to the presence of compiler optimizations and the absence of symbols and types. Existing approaches either produce significant spurious dependencies due to conservative analysis or scale poorly to complex binaries. We present a new machine-learning-based approach to predict memory dependencies by exploiting the model's learned knowledge about how binary programs execute. Our approach features (i) a self-supervised procedure that pretrains a neural net to reason over binary code and its dynamic value flows through memory addresses, followed by (ii) supervised finetuning to infer the memory dependencies statically. To facilitate efficient learning, we develop dedicated neural architectures to encode the heterogeneous inputs (i.e., code, data values, and memory addresses from traces) with specific modules and fuse them with a composition learning strategy. We implement our approach in NeuDep and evaluate it on 41 popular software projects compiled by 2 compilers, 4 optimizations, and 4 obfuscation passes. We demonstrate that NeuDep is more precise (1.5x) and faster (3.5x) than the current state-of-the-art. Extensive probing studies on security-critical reverse engineering tasks suggest that NeuDep understands memory access patterns, learns function signatures, and is able to match indirect calls. All these tasks either assist or benefit from inferring memory dependencies. Notably, NeuDep also outperforms the current state-of-the-art on these tasks.
Abstract:Detecting semantically similar functions -- a crucial analysis capability with broad real-world security usages including vulnerability detection, malware lineage, and forensics -- requires understanding function behaviors and intentions. This task is challenging as semantically similar functions can be implemented differently, run on different architectures, and compiled with diverse compiler optimizations or obfuscations. Most existing approaches match functions based on syntactic features without understanding the functions' execution semantics. We present Trex, a transfer-learning-based framework, to automate learning execution semantics explicitly from functions' micro-traces and transfer the learned knowledge to match semantically similar functions. Our key insight is that these traces can be used to teach an ML model the execution semantics of different sequences of instructions. We thus train the model to learn execution semantics from the functions' micro-traces, without any manual labeling effort. We then develop a novel neural architecture to learn execution semantics from micro-traces, and we finetune the pretrained model to match semantically similar functions. We evaluate Trex on 1,472,066 function binaries from 13 popular software projects. These functions are from different architectures and compiled with various optimizations and obfuscations. Trex outperforms the state-of-the-art systems by 7.8%, 7.2%, and 14.3% in cross-architecture, optimization, and obfuscation function matching, respectively. Ablation studies show that the pretraining significantly boosts the function matching performance, underscoring the importance of learning execution semantics.