Abstract:Federated learning collaboratively trains a neural network on a global server, where each local client receives the current global model weights and sends back parameter updates (gradients) based on its local private data. The process of sending these model updates may leak client's private data information. Existing gradient inversion attacks can exploit this vulnerability to recover private training instances from a client's gradient vectors. Recently, researchers have proposed advanced gradient inversion techniques that existing defenses struggle to handle effectively. In this work, we present a novel defense tailored for large neural network models. Our defense capitalizes on the high dimensionality of the model parameters to perturb gradients within a subspace orthogonal to the original gradient. By leveraging cold posteriors over orthogonal subspaces, our defense implements a refined gradient update mechanism. This enables the selection of an optimal gradient that not only safeguards against gradient inversion attacks but also maintains model utility. We conduct comprehensive experiments across three different datasets and evaluate our defense against various state-of-the-art attacks and defenses. Code is available at https://censor-gradient.github.io.
Abstract:Deep neural networks (DNNs) have demonstrated effectiveness in various fields. However, DNNs are vulnerable to backdoor attacks, which inject a unique pattern, called trigger, into the input to cause misclassification to an attack-chosen target label. While existing works have proposed various methods to mitigate backdoor effects in poisoned models, they tend to be less effective against recent advanced attacks. In this paper, we introduce a novel post-training defense technique UNIT that can effectively eliminate backdoor effects for a variety of attacks. In specific, UNIT approximates a unique and tight activation distribution for each neuron in the model. It then proactively dispels substantially large activation values that exceed the approximated boundaries. Our experimental results demonstrate that UNIT outperforms 7 popular defense methods against 14 existing backdoor attacks, including 2 advanced attacks, using only 5\% of clean training data. UNIT is also cost efficient. The code is accessible at https://github.com/Megum1/UNIT.
Abstract:Backdoor attack poses a significant security threat to Deep Learning applications. Existing attacks are often not evasive to established backdoor detection techniques. This susceptibility primarily stems from the fact that these attacks typically leverage a universal trigger pattern or transformation function, such that the trigger can cause misclassification for any input. In response to this, recent papers have introduced attacks using sample-specific invisible triggers crafted through special transformation functions. While these approaches manage to evade detection to some extent, they reveal vulnerability to existing backdoor mitigation techniques. To address and enhance both evasiveness and resilience, we introduce a novel backdoor attack LOTUS. Specifically, it leverages a secret function to separate samples in the victim class into a set of partitions and applies unique triggers to different partitions. Furthermore, LOTUS incorporates an effective trigger focusing mechanism, ensuring only the trigger corresponding to the partition can induce the backdoor behavior. Extensive experimental results show that LOTUS can achieve high attack success rate across 4 datasets and 7 model structures, and effectively evading 13 backdoor detection and mitigation techniques. The code is available at https://github.com/Megum1/LOTUS.
Abstract:Large Language Models (LLMs) have become prevalent across diverse sectors, transforming human life with their extraordinary reasoning and comprehension abilities. As they find increased use in sensitive tasks, safety concerns have gained widespread attention. Extensive efforts have been dedicated to aligning LLMs with human moral principles to ensure their safe deployment. Despite their potential, recent research indicates aligned LLMs are prone to specialized jailbreaking prompts that bypass safety measures to elicit violent and harmful content. The intrinsic discrete nature and substantial scale of contemporary LLMs pose significant challenges in automatically generating diverse, efficient, and potent jailbreaking prompts, representing a continuous obstacle. In this paper, we introduce RIPPLE (Rapid Optimization via Subconscious Exploitation and Echopraxia), a novel optimization-based method inspired by two psychological concepts: subconsciousness and echopraxia, which describe the processes of the mind that occur without conscious awareness and the involuntary mimicry of actions, respectively. Evaluations across 6 open-source LLMs and 4 commercial LLM APIs show RIPPLE achieves an average Attack Success Rate of 91.5\%, outperforming five current methods by up to 47.0\% with an 8x reduction in overhead. Furthermore, it displays significant transferability and stealth, successfully evading established detection mechanisms. The code of our work is available at \url{https://github.com/SolidShen/RIPPLE_official/tree/official}
Abstract:Diffusion models (DM) have become state-of-the-art generative models because of their capability to generate high-quality images from noises without adversarial training. However, they are vulnerable to backdoor attacks as reported by recent studies. When a data input (e.g., some Gaussian noise) is stamped with a trigger (e.g., a white patch), the backdoored model always generates the target image (e.g., an improper photo). However, effective defense strategies to mitigate backdoors from DMs are underexplored. To bridge this gap, we propose the first backdoor detection and removal framework for DMs. We evaluate our framework Elijah on hundreds of DMs of 3 types including DDPM, NCSN and LDM, with 13 samplers against 3 existing backdoor attacks. Extensive experiments show that our approach can have close to 100% detection accuracy and reduce the backdoor effects to close to zero without significantly sacrificing the model utility.
Abstract:Deep Learning backdoor attacks have a threat model similar to traditional cyber attacks. Attack forensics, a critical counter-measure for traditional cyber attacks, is hence of importance for defending model backdoor attacks. In this paper, we propose a novel model backdoor forensics technique. Given a few attack samples such as inputs with backdoor triggers, which may represent different types of backdoors, our technique automatically decomposes them to clean inputs and the corresponding triggers. It then clusters the triggers based on their properties to allow automatic attack categorization and summarization. Backdoor scanners can then be automatically synthesized to find other instances of the same type of backdoor in other models. Our evaluation on 2,532 pre-trained models, 10 popular attacks, and comparison with 9 baselines show that our technique is highly effective. The decomposed clean inputs and triggers closely resemble the ground truth. The synthesized scanners substantially outperform the vanilla versions of existing scanners that can hardly generalize to different kinds of attacks.
Abstract:We conduct a systematic study of backdoor vulnerabilities in normally trained Deep Learning models. They are as dangerous as backdoors injected by data poisoning because both can be equally exploited. We leverage 20 different types of injected backdoor attacks in the literature as the guidance and study their correspondences in normally trained models, which we call natural backdoor vulnerabilities. We find that natural backdoors are widely existing, with most injected backdoor attacks having natural correspondences. We categorize these natural backdoors and propose a general detection framework. It finds 315 natural backdoors in the 56 normally trained models downloaded from the Internet, covering all the different categories, while existing scanners designed for injected backdoors can at most detect 65 backdoors. We also study the root causes and defense of natural backdoors.
Abstract:Federated Learning (FL) is a distributed learning paradigm that enables different parties to train a model together for high quality and strong privacy protection. In this scenario, individual participants may get compromised and perform backdoor attacks by poisoning the data (or gradients). Existing work on robust aggregation and certified FL robustness does not study how hardening benign clients can affect the global model (and the malicious clients). In this work, we theoretically analyze the connection among cross-entropy loss, attack success rate, and clean accuracy in this setting. Moreover, we propose a trigger reverse engineering based defense and show that our method can achieve robustness improvement with guarantee (i.e., reducing the attack success rate) without affecting benign accuracy. We conduct comprehensive experiments across different datasets and attack settings. Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
Abstract:Backdoor attacks have been shown to be a serious security threat against deep learning models, and detecting whether a given model has been backdoored becomes a crucial task. Existing defenses are mainly built upon the observation that the backdoor trigger is usually of small size or affects the activation of only a few neurons. However, the above observations are violated in many cases especially for advanced backdoor attacks, hindering the performance and applicability of the existing defenses. In this paper, we propose a backdoor defense DTInspector built upon a new observation. That is, an effective backdoor attack usually requires high prediction confidence on the poisoned training samples, so as to ensure that the trained model exhibits the targeted behavior with a high probability. Based on this observation, DTInspector first learns a patch that could change the predictions of most high-confidence data, and then decides the existence of backdoor by checking the ratio of prediction changes after applying the learned patch on the low-confidence data. Extensive evaluations on five backdoor attacks, four datasets, and three advanced attacking types demonstrate the effectiveness of the proposed defense.
Abstract:Pervasive backdoors are triggered by dynamic and pervasive input perturbations. They can be intentionally injected by attackers or naturally exist in normally trained models. They have a different nature from the traditional static and localized backdoors that can be triggered by perturbing a small input area with some fixed pattern, e.g., a patch with solid color. Existing defense techniques are highly effective for traditional backdoors. However, they may not work well for pervasive backdoors, especially regarding backdoor removal and model hardening. In this paper, we propose a novel model hardening technique against pervasive backdoors, including both natural and injected backdoors. We develop a general pervasive attack based on an encoder-decoder architecture enhanced with a special transformation layer. The attack can model a wide range of existing pervasive backdoor attacks and quantify them by class distances. As such, using the samples derived from our attack in adversarial training can harden a model against these backdoor vulnerabilities. Our evaluation on 9 datasets with 15 model structures shows that our technique can enlarge class distances by 59.65% on average with less than 1% accuracy degradation and no robustness loss, outperforming five hardening techniques such as adversarial training, universal adversarial training, MOTH, etc. It can reduce the attack success rate of six pervasive backdoor attacks from 99.06% to 1.94%, surpassing seven state-of-the-art backdoor removal techniques.