Abstract:Deep learning has shown incredible potential across a vast array of tasks and accompanying this growth has been an insatiable appetite for data. However, a large amount of data needed for enabling deep learning is stored on personal devices and recent concerns on privacy have further highlighted challenges for accessing such data. As a result, federated learning (FL) has emerged as an important privacy-preserving technology enabling collaborative training of machine learning models without the need to send the raw, potentially sensitive, data to a central server. However, the fundamental premise that sending model updates to a server is privacy-preserving only holds if the updates cannot be "reverse engineered" to infer information about the private training data. It has been shown under a wide variety of settings that this premise for privacy does {\em not} hold. In this survey paper, we provide a comprehensive literature review of the different privacy attacks and defense methods in FL. We identify the current limitations of these attacks and highlight the settings in which FL client privacy can be broken. We dissect some of the successful industry applications of FL and draw lessons for future successful adoption. We survey the emerging landscape of privacy regulation for FL. We conclude with future directions for taking FL toward the cherished goal of generating accurate models while preserving the privacy of the data from its participants.
Abstract:Data synthesis has been advocated as an important approach for utilizing data while protecting data privacy. A large number of tabular data synthesis algorithms (which we call synthesizers) have been proposed. Some synthesizers satisfy Differential Privacy, while others aim to provide privacy in a heuristic fashion. A comprehensive understanding of the strengths and weaknesses of these synthesizers remains elusive due to lacking principled evaluation metrics and missing head-to-head comparisons of newly developed synthesizers that take advantage of diffusion models and large language models with state-of-the-art marginal-based synthesizers. In this paper, we present a principled and systematic evaluation framework for assessing tabular data synthesis algorithms. Specifically, we examine and critique existing evaluation metrics, and introduce a set of new metrics in terms of fidelity, privacy, and utility to address their limitations. Based on the proposed metrics, we also devise a unified objective for tuning, which can consistently improve the quality of synthetic data for all methods. We conducted extensive evaluations of 8 different types of synthesizers on 12 datasets and identified some interesting findings, which offer new directions for privacy-preserving data synthesis.
Abstract:In Member Inference (MI) attacks, the adversary try to determine whether an instance is used to train a machine learning (ML) model. MI attacks are a major privacy concern when using private data to train ML models. Most MI attacks in the literature take advantage of the fact that ML models are trained to fit the training data well, and thus have very low loss on training instances. Most defenses against MI attacks therefore try to make the model fit the training data less well. Doing so, however, generally results in lower accuracy. We observe that training instances have different degrees of vulnerability to MI attacks. Most instances will have low loss even when not included in training. For these instances, the model can fit them well without concerns of MI attacks. An effective defense only needs to (possibly implicitly) identify instances that are vulnerable to MI attacks and avoids overfitting them. A major challenge is how to achieve such an effect in an efficient training process. Leveraging two distinct recent advancements in representation learning: counterfactually-invariant representations and subspace learning methods, we introduce a novel Membership-Invariant Subspace Training (MIST) method to defend against MI attacks. MIST avoids overfitting the vulnerable instances without significant impact on other instances. We have conducted extensive experimental studies, comparing MIST with various other state-of-the-art (SOTA) MI defenses against several SOTA MI attacks. We find that MIST outperforms other defenses while resulting in minimal reduction in testing accuracy.
Abstract:In many applications, multiple parties have private data regarding the same set of users but on disjoint sets of attributes, and a server wants to leverage the data to train a model. To enable model learning while protecting the privacy of the data subjects, we need vertical federated learning (VFL) techniques, where the data parties share only information for training the model, instead of the private data. However, it is challenging to ensure that the shared information maintains privacy while learning accurate models. To the best of our knowledge, the algorithm proposed in this paper is the first practical solution for differentially private vertical federated k-means clustering, where the server can obtain a set of global centers with a provable differential privacy guarantee. Our algorithm assumes an untrusted central server that aggregates differentially private local centers and membership encodings from local data parties. It builds a weighted grid as the synopsis of the global dataset based on the received information. Final centers are generated by running any k-means algorithm on the weighted grid. Our approach for grid weight estimation uses a novel, light-weight, and differentially private set intersection cardinality estimation algorithm based on the Flajolet-Martin sketch. To improve the estimation accuracy in the setting with more than two data parties, we further propose a refined version of the weights estimation algorithm and a parameter tuning strategy to reduce the final k-means utility to be close to that in the central private setting. We provide theoretical utility analysis and experimental evaluation results for the cluster centers computed by our algorithm and show that our approach performs better both theoretically and empirically than the two baselines based on existing techniques.
Abstract:Increasing use of machine learning (ML) technologies in privacy-sensitive domains such as medical diagnoses, lifestyle predictions, and business decisions highlights the need to better understand if these ML technologies are introducing leakage of sensitive and proprietary training data. In this paper, we focus on model inversion attacks where the adversary knows non-sensitive attributes about records in the training data and aims to infer the value of a sensitive attribute unknown to the adversary, using only black-box access to the target classification model. We first devise a novel confidence score-based model inversion attribute inference attack that significantly outperforms the state-of-the-art. We then introduce a label-only model inversion attack that relies only on the model's predicted labels but still matches our confidence score-based attack in terms of attack effectiveness. We also extend our attacks to the scenario where some of the other (non-sensitive) attributes of a target record are unknown to the adversary. We evaluate our attacks on two types of machine learning models, decision tree and deep neural network, trained on three real datasets. Moreover, we empirically demonstrate the disparate vulnerability of model inversion attacks, i.e., specific groups in the training dataset (grouped by gender, race, etc.) could be more vulnerable to model inversion attacks.
Abstract:Increasing use of ML technologies in privacy-sensitive domains such as medical diagnoses, lifestyle predictions, and business decisions highlights the need to better understand if these ML technologies are introducing leakages of sensitive and proprietary training data. In this paper, we focus on one kind of model inversion attacks, where the adversary knows non-sensitive attributes about instances in the training data and aims to infer the value of a sensitive attribute unknown to the adversary, using oracle access to the target classification model. We devise two novel model inversion attribute inference attacks -- confidence modeling-based attack and confidence score-based attack, and also extend our attack to the case where some of the other (non-sensitive) attributes are unknown to the adversary. Furthermore, while previous work uses accuracy as the metric to evaluate the effectiveness of attribute inference attacks, we find that accuracy is not informative when the sensitive attribute distribution is unbalanced. We identify two metrics that are better for evaluating attribute inference attacks, namely G-mean and Matthews correlation coefficient (MCC). We evaluate our attacks on two types of machine learning models, decision tree and deep neural network, trained with two real datasets. Experimental results show that our newly proposed attacks significantly outperform the state-of-the-art attacks. Moreover, we empirically show that specific groups in the training dataset (grouped by attributes, e.g., gender, race) could be more vulnerable to model inversion attacks. We also demonstrate that our attacks' performances are not impacted significantly when some of the other (non-sensitive) attributes are also unknown to the adversary.
Abstract:In this paper, we study the problem of publishing a stream of real-valued data satisfying differential privacy (DP). One major challenge is that the maximal possible value can be quite large; thus it is necessary to estimate a threshold so that numbers above it are truncated to reduce the amount of noise that is required to all the data. The estimation must be done based on the data in a private fashion. We develop such a method that uses the Exponential Mechanism with a quality function that approximates well the utility goal while maintaining a low sensitivity. Given the threshold, we then propose a novel online hierarchical method and several post-processing techniques. Building on these ideas, we formalize the steps into a framework for private publishing of stream data. Our framework consists of three components: a threshold optimizer that privately estimates the threshold, a perturber that adds calibrated noises to the stream, and a smoother that improves the result using post-processing. Within our framework, we design an algorithm satisfying the more stringent setting of DP called local DP (LDP). To our knowledge, this is the first LDP algorithm for publishing streaming data. Using four real-world datasets, we demonstrate that our mechanism outperforms the state-of-the-art by a factor of 6-10 orders of magnitude in terms of utility (measured by the mean squared error of answering a random range query).
Abstract:This work studies membership inference (MI) attack against classifiers, where the attacker's goal is to determine whether a data instance was used for training the classifier. While it is known that overfitting makes classifiers susceptible to MI attacks, we showcase a simple numerical relationship between the generalization gap---the difference between training and test accuracies---and the classifier's vulnerability to MI attacks---as measured by an MI attack's accuracy gain over a random guess. We then propose to close the gap by matching the training and validation accuracies during training, by means of a new {\em set regularizer} using the Maximum Mean Discrepancy between the softmax output empirical distributions of the training and validation sets. Our experimental results show that combining this approach with another simple defense (mix-up training) significantly improves state-of-the-art defense against MI attacks, with minimal impact on testing accuracy.
Abstract:When collecting information, local differential privacy (LDP) relieves the concern of privacy leakage from users' perspective, as user's private information is randomized before sent to the aggregator. We study the problem of recovering the distribution over a numerical domain while satisfying LDP. While one can discretize a numerical domain and then apply the protocols developed for categorical domains, we show that taking advantage of the numerical nature of the domain results in better trade-off of privacy and utility. We introduce a new reporting mechanism, called the square wave SW mechanism, which exploits the numerical nature in reporting. We also develop an Expectation Maximization with Smoothing (EMS) algorithm, which is applied to aggregated histograms from the SW mechanism to estimate the original distributions. Extensive experiments demonstrate that our proposed approach, SW with EMS, consistently outperforms other methods in a variety of utility metrics.
Abstract:When collecting information, local differential privacy (LDP) alleviates privacy concerns of users, as users' private information is randomized before being sent to the central aggregator. However, LDP results in loss of utility due to the amount of noise that is added. To address this issue, recent work introduced an intermediate server and with the assumption that this intermediate server did not collude with the aggregator. Using this trust model, one can add less noise to achieve the same privacy guarantee; thus improving the utility. In this paper, we investigate this multiple-party setting of LDP. We first analyze the threat model and identify potential adversaries. We then make observations about existing approaches and propose new techniques that achieve a better privacy-utility tradeoff than existing ones. Finally, we perform experiments to compare different methods and demonstrate the benefits of using our proposed method.