CISCO Research, USA
Abstract:Organizations often lay down rules or guidelines called Natural Language Access Control Policies (NLACPs) for specifying who gets access to which information and when. However, these cannot be directly used in a target access control model like Attribute-based Access Control (ABAC). Manually translating the NLACP rules into Machine Enforceable Security Policies (MESPs) is both time consuming and resource intensive, rendering it infeasible especially for large organizations. Automated machine translation workflows, on the other hand, require information security officers to be adept at using such processes. To effectively address this problem, we have developed a free web-based publicly accessible tool called LMN (LLMs for generating MESPs from NLACPs) that takes an NLACP as input and converts it into a corresponding MESP. Internally, LMN uses the GPT 3.5 API calls and an appropriately chosen prompt. Extensive experiments with different prompts and performance metrics firmly establish the usefulness of LMN.
Abstract:Generative AI (Gen AI) with large language models (LLMs) are being widely adopted across the industry, academia and government. Cybersecurity is one of the key sectors where LLMs can be and/or are already being used. There are a number of problems that inhibit the adoption of trustworthy Gen AI and LLMs in cybersecurity and such other critical areas. One of the key challenge to the trustworthiness and reliability of LLMs is: how consistent an LLM is in its responses? In this paper, we have analyzed and developed a formal definition of consistency of responses of LLMs. We have formally defined what is consistency of responses and then develop a framework for consistency evaluation. The paper proposes two approaches to validate consistency: self-validation, and validation across multiple LLMs. We have carried out extensive experiments for several LLMs such as GPT4oMini, GPT3.5, Gemini, Cohere, and Llama3, on a security benchmark consisting of several cybersecurity questions: informational and situational. Our experiments corroborate the fact that even though these LLMs are being considered and/or already being used for several cybersecurity tasks today, they are often inconsistent in their responses, and thus are untrustworthy and unreliable for cybersecurity.
Abstract:Recent advances in voice synthesis, coupled with the ease with which speech can be harvested for millions of people, introduce new threats to applications that are enabled by devices such as voice assistants (e.g., Amazon Alexa, Google Home etc.). We explore if unrelated and limited amount of speech from a target can be used to synthesize commands for a voice assistant like Amazon Alexa. More specifically, we investigate attacks on voice assistants with synthetic commands when they match command sources to authorized users, and applications (e.g., Alexa Skills) process commands only when their source is an authorized user with a chosen confidence level. We demonstrate that even simple concatenative speech synthesis can be used by an attacker to command voice assistants to perform sensitive operations. We also show that such attacks, when launched by exploiting compromised devices in the vicinity of voice assistants, can have relatively small host and network footprint. Our results demonstrate the need for better defenses against synthetic malicious commands that could target voice assistants.
Abstract:As the complexity of modern systems increases, so does the importance of assessing their security posture through effective vulnerability management and threat modeling techniques. One powerful tool in the arsenal of cybersecurity professionals is the attack graph, a representation of all potential attack paths within a system that an adversary might exploit to achieve a certain objective. Traditional methods of generating attack graphs involve expert knowledge, manual curation, and computational algorithms that might not cover the entire threat landscape due to the ever-evolving nature of vulnerabilities and exploits. This paper explores the approach of leveraging large language models (LLMs), such as ChatGPT, to automate the generation of attack graphs by intelligently chaining Common Vulnerabilities and Exposures (CVEs) based on their preconditions and effects. It also shows how to utilize LLMs to create attack graphs from threat reports.
Abstract:Differentially private federated learning (DP-FL) is a promising technique for collaborative model training while ensuring provable privacy for clients. However, optimizing the tradeoff between privacy and accuracy remains a critical challenge. To our best knowledge, we propose the first DP-FL framework (namely UDP-FL), which universally harmonizes any randomization mechanism (e.g., an optimal one) with the Gaussian Moments Accountant (viz. DP-SGD) to significantly boost accuracy and convergence. Specifically, UDP-FL demonstrates enhanced model performance by mitigating the reliance on Gaussian noise. The key mediator variable in this transformation is the R\'enyi Differential Privacy notion, which is carefully used to harmonize privacy budgets. We also propose an innovative method to theoretically analyze the convergence for DP-FL (including our UDP-FL ) based on mode connectivity analysis. Moreover, we evaluate our UDP-FL through extensive experiments benchmarked against state-of-the-art (SOTA) methods, demonstrating superior performance on both privacy guarantees and model performance. Notably, UDP-FL exhibits substantial resilience against different inference attacks, indicating a significant advance in safeguarding sensitive data in federated learning environments.
Abstract:Generative models such as large language models are extensively used as code copilots and for whole program generation. However, the programs they generate often have questionable correctness, authenticity and reliability in terms of integration as they might not follow the user requirements, provide incorrect and/or nonsensical outputs, or even contain semantic/syntactic errors - overall known as LLM hallucination. In this work, we present several types of code hallucination. We have generated such hallucinated code manually using large language models. We also present a technique - HallTrigger, in order to demonstrate efficient ways of generating arbitrary code hallucination. Our method leverages 3 different dynamic attributes of LLMs to craft prompts that can successfully trigger hallucinations from models without the need to access model architecture or parameters. Results from popular blackbox models suggest that HallTrigger is indeed effective and the pervasive LLM hallucination have sheer impact on software development.
Abstract:Differentially Private Stochastic Gradient Descent (DP-SGD) and its variants have been proposed to ensure rigorous privacy for fine-tuning large-scale pre-trained language models. However, they rely heavily on the Gaussian mechanism, which may overly perturb the gradients and degrade the accuracy, especially in stronger privacy regimes (e.g., the privacy budget $\epsilon < 3$). To address such limitations, we propose a novel Language Model-based Optimal Differential Privacy (LMO-DP) mechanism, which takes the first step to enable the tight composition of accurately fine-tuning (large) language models with a sub-optimal DP mechanism, even in strong privacy regimes (e.g., $0.1\leq \epsilon<3$). Furthermore, we propose a novel offline optimal noise search method to efficiently derive the sub-optimal DP that significantly reduces the noise magnitude. For instance, fine-tuning RoBERTa-large (with 300M parameters) on the SST-2 dataset can achieve an accuracy of 92.20% (given $\epsilon=0.3$, $\delta=10^{-10}$) by drastically outperforming the Gaussian mechanism (e.g., $\sim 50\%$ for small $\epsilon$ and $\delta$). We also draw similar findings on the text generation tasks on GPT-2. Finally, to our best knowledge, LMO-DP is also the first solution to accurately fine-tune Llama-2 with strong differential privacy guarantees. The code will be released soon and available upon request.
Abstract:Many machine learning and data mining algorithms rely on the assumption that the training and testing data share the same feature space and distribution. However, this assumption may not always hold. For instance, there are situations where we need to classify data in one domain, but we only have sufficient training data available from a different domain. The latter data may follow a distinct distribution. In such cases, successfully transferring knowledge across domains can significantly improve learning performance and reduce the need for extensive data labeling efforts. Transfer learning (TL) has thus emerged as a promising framework to tackle this challenge, particularly in security-related tasks. This paper aims to review the current advancements in utilizing TL techniques for security. The paper includes a discussion of the existing research gaps in applying TL in the security domain, as well as exploring potential future research directions and issues that arise in the context of TL-assisted security solutions.
Abstract:Artificial intelligence (AI) has the potential to transform education with its power of uncovering insights from massive data about student learning patterns. However, ethical and trustworthy concerns of AI have been raised but are unsolved. Prominent ethical issues in high school AI education include data privacy, information leakage, abusive language, and fairness. This paper describes technological components that were built to address ethical and trustworthy concerns in a multi-modal collaborative platform (called ALLURE chatbot) for high school students to collaborate with AI to solve the Rubik's cube. In data privacy, we want to ensure that the informed consent of children, parents, and teachers, is at the center of any data that is managed. Since children are involved, language, whether textual, audio, or visual, is acceptable both from users and AI and the system can steer interaction away from dangerous situations. In information management, we also want to ensure that the system, while learning to improve over time, does not leak information about users from one group to another.
Abstract:The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infrastructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vulnerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose Prometheus, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, Prometheus performs a comprehensive security assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, Prometheus evaluates the exploitability of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, Prometheus delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in Prometheus, showcasing the systematic approach adopted for conducting this thorough security analysis.