Abstract:The rapid growth in the parameters of large language models (LLMs) has made inference latency a fundamental bottleneck, limiting broader application of LLMs. Speculative decoding represents a lossless approach to accelerate inference through a guess-and-verify paradigm, leveraging the parallel capabilities of modern hardware. Some speculative decoding methods rely on additional structures to guess draft tokens, such as small models or parameter-efficient architectures, which need extra training before use. Alternatively, retrieval-based train-free techniques build libraries from pre-existing corpora or by n-gram generation. However, they face challenges like large storage requirements, time-consuming retrieval, and limited adaptability. Observing that candidate tokens generated during the decoding process are likely to reoccur in future sequences, we propose Token Recycling. This approach stores candidate tokens in an adjacency matrix and employs a breadth-first search (BFS)-like algorithm on the matrix to construct a draft tree. The tree is then validated through tree attention. New candidate tokens from the decoding process are then used to update the matrix. Token Recycling requires \textless2MB of additional storage and achieves approximately 2x speedup across all sizes of LLMs. It significantly outperforms existing train-free methods by 30\% and even a training method by 25\%. It can be directly applied to any existing LLMs and tasks without the need for adaptation.
Abstract:This study introduces an innovative method for analyzing the impact of various interventions on customer churn, using the potential outcomes framework. We present a new causal model, the tensorized latent factor block hazard model, which incorporates tensor completion methods for a principled causal analysis of customer churn. A crucial element of our approach is the formulation of a 1-bit tensor completion for the parameter tensor. This captures hidden customer characteristics and temporal elements from churn records, effectively addressing the binary nature of churn data and its time-monotonic trends. Our model also uniquely categorizes interventions by their similar impacts, enhancing the precision and practicality of implementing customer retention strategies. For computational efficiency, we apply a projected gradient descent algorithm combined with spectral clustering. We lay down the theoretical groundwork for our model, including its non-asymptotic properties. The efficacy and superiority of our model are further validated through comprehensive experiments on both simulated and real-world applications.
Abstract:Instruction tuning plays a pivotal role in Code Large Language Models (Code LLMs) for the task of program synthesis. Presently, two dominant paradigms for collecting tuning data are natural-instruct (human-written) and self-instruct (automatically generated). Natural-instruct includes diverse and correct codes but lacks instruction-code pairs, and exists improper code formats like nested single-line codes. In contrast, self-instruct automatically generates proper paired data. However, it suffers from low diversity due to generating duplicates and cannot ensure the correctness of codes. To bridge the both paradigms, we propose \textbf{Semi-Instruct}. It first converts diverse but improper codes from natural-instruct into proper instruction-code pairs through a method similar to self-instruct. To verify the correctness of generated codes, we design a novel way to construct test cases by generating cases' inputs and executing correct codes from natural-instruct to get outputs. Finally, diverse and correct instruction-code pairs are retained for instruction tuning. Experiments show that semi-instruct is significantly better than natural-instruct and self-instruct. Furthermore, the performance steadily improves as data scale increases.
Abstract:Program of Thoughts (PoT) is an approach characterized by its executable intermediate steps, which ensure the accuracy of the numerical calculations in the reasoning process. Currently, PoT primarily uses Python. However, relying solely on a single language may result in suboptimal solutions and overlook the potential benefits of other programming languages. In this paper, we conduct comprehensive experiments on the programming languages used in PoT and find that no single language consistently delivers optimal performance across all tasks and models. The effectiveness of each language varies depending on the specific scenarios. Inspired by this, we propose a task and model agnostic approach called MultiPoT, which harnesses strength and diversity from various languages. Experimental results reveal that it significantly outperforms Python Self-Consistency. Furthermore, it achieves comparable or superior performance compared to the best monolingual PoT in almost all tasks across all models. In particular, MultiPoT achieves more than 4.6\% improvement on average on both Starcoder and ChatGPT (gpt-3.5-turbo).
Abstract:In recent years, real image super-resolution (SR) has achieved promising results due to the development of SR datasets and corresponding real SR methods. In contrast, the field of real video SR is lagging behind, especially for real raw videos. Considering the superiority of raw image SR over sRGB image SR, we construct a real-world raw video SR (Real-RawVSR) dataset and propose a corresponding SR method. We utilize two DSLR cameras and a beam-splitter to simultaneously capture low-resolution (LR) and high-resolution (HR) raw videos with 2x, 3x, and 4x magnifications. There are 450 video pairs in our dataset, with scenes varying from indoor to outdoor, and motions including camera and object movements. To our knowledge, this is the first real-world raw VSR dataset. Since the raw video is characterized by the Bayer pattern, we propose a two-branch network, which deals with both the packed RGGB sequence and the original Bayer pattern sequence, and the two branches are complementary to each other. After going through the proposed co-alignment, interaction, fusion, and reconstruction modules, we generate the corresponding HR sRGB sequence. Experimental results demonstrate that the proposed method outperforms benchmark real and synthetic video SR methods with either raw or sRGB inputs. Our code and dataset are available at https://github.com/zmzhang1998/Real-RawVSR.
Abstract:Machine learning approaches have been widely used for discovering the underlying physics of dynamical systems from measured data. Existing approaches, however, still lack robustness, especially when the measured data contain a large level of noise. The lack of robustness is mainly attributed to the insufficient representativeness of used features. As a result, the intrinsic mechanism governing the observed system cannot be accurately identified. In this study, we use an efficient topological descriptor for complex data, i.e., the Euler characteristics (ECs), as features to characterize the spatiotemporal data collected from dynamical systems and discover the underlying physics. Unsupervised manifold learning and supervised classification results show that EC can be used to efficiently distinguish systems with different while similar governing models. We also demonstrate that the machine learning approaches using EC can improve the confidence level of sparse regression methods of physics discovery.
Abstract:Robust physics discovery is of great interest for many scientific and engineering fields. Inspired by the principle that a representative model is the one simplest possible, a new model selection criteria considering both model's Parsimony and Sparsity is proposed. A Parsimony Enhanced Sparse Bayesian Learning (PeSBL) method is developed for discovering the governing Partial Differential Equations (PDEs) of nonlinear dynamical systems. Compared with the conventional Sparse Bayesian Learning (SBL) method, the PeSBL method promotes parsimony of the learned model in addition to its sparsity. In this method, the parsimony of model terms is evaluated using their locations in the prescribed candidate library, for the first time, considering the increased complexity with the power of polynomials and the order of spatial derivatives. Subsequently, the model parameters are updated through Bayesian inference with the raw data. This procedure aims to reduce the error associated with the possible loss of information in data preprocessing and numerical differentiation prior to sparse regression. Results of numerical case studies indicate that the governing PDEs of many canonical dynamical systems can be correctly identified using the proposed PeSBL method from highly noisy data (up to 50% in the current study). Next, the proposed methodology is extended for stochastic PDE learning where all parameters and modeling error are considered as random variables. Hierarchical Bayesian Inference (HBI) is integrated with the proposed framework for stochastic PDE learning from a population of observations. Finally, the proposed PeSBL is demonstrated for system response prediction with uncertainties and anomaly diagnosis. Codes of all demonstrated examples in this study are available on the website: https://github.com/ymlasu.
Abstract:This study proposes a data-driven method that detects cable damage from measured cable forces by recognizing biased patterns from the intact conditions. The proposed method solves the pattern recognition problem for cable damage detection through time series classification (TSC) in deep learning, considering that the cable's behavior can be implicitly represented by the measured cable force series. A deep learning model, long short term memory fully convolutional network (LSTM-FCN), is leveraged by assigning appropriate inputs and representative class labels for the TSC problem, First, a TSC classifier is trained and validated using the data collected under intact conditions of stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. The proposed method was tested on an in-service cable-stayed bridge with damaged stay cables. Two scenarios in the proposed TSC scheme were investigated: 1) raw time series of cable forces were fed into the classifiers; and 2) cable force ratios were inputted in the classifiers considering the possible variation of force distribution between cable pairs due to cable damage. Combining the results of TSC testing in these two scenarios, the cable with rupture was correctly identified. This study proposes a data-driven methodology for cable damage detection that requires the least data preprocessing and feature engineering, which enables fast and convenient early detection in real applications.