Abstract:This paper presents a collaborative fall detection and response system integrating Wi-Fi sensing with robotic assistance. The proposed system leverages channel state information (CSI) disruptions caused by movements to detect falls in non-line-of-sight (NLOS) scenarios, offering non-intrusive monitoring. Besides, a companion robot is utilized to provide assistance capabilities to navigate and respond to incidents autonomously, improving efficiency in providing assistance in various environments. The experimental results demonstrate the effectiveness of the proposed system in detecting falls and responding effectively.
Abstract:Wheeled robots are highly efficient in human living environments. However, conventional wheeled designs, with their limited degrees of freedom and constraints in robot configuration, struggle to simultaneously achieve stability, passability, and agility due to varying footprint needs. This paper proposes a novel robot drive model inspired by human movements, termed as the Omni Differential Drive (ODD). The ODD model innovatively utilizes a lateral differential drive to adjust wheel spacing without adding additional actuators to the existing omnidirectional drive. This approach enables wheeled robots to achieve both simultaneous reconfiguration and omnidirectional mobility. To validate the feasibility of the ODD model, a functional prototype was developed, followed by comprehensive kinematic analyses. Control systems for self-balancing and motion control were designed and implemented. Experimental validations confirmed the feasibility of the ODD mechanism and the effectiveness of the control strategies. The results underline the potential of this innovative drive system to enhance the mobility and adaptability of robotic platforms.
Abstract:Deep learning has become a crucial technology for making breakthroughs in many fields. Nevertheless, it still faces two important challenges in theoretical and applied aspects. The first lies in the shortcomings of gradient descent based learning schemes which are time-consuming and difficult to determine the learning control hyperparameters. Next, the architectural design of the model is usually tricky. In this paper, we propose a semi-adaptive synergetic two-way pseudoinverse learning system, wherein each subsystem encompasses forward learning, backward learning, and feature concatenation modules. The whole system is trained using a non-gradient descent learning algorithm. It simplifies the hyperparameter tuning while improving the training efficiency. The architecture of the subsystems is designed using a data-driven approach that enables automated determination of the depth of the subsystems. We compare our method with the baselines of mainstream non-gradient descent based methods and the results demonstrate the effectiveness of our proposed method. The source code for this paper is available at http://github.com/B-berrypie/Semi-adaptive-Synergetic-Two-way-Pseudoinverse-Learning-System}{http://github.com/B-berrypie/Semi-adaptive-Synergetic-Two-way-Pseudoinverse-Learning-System.
Abstract:Offline reinforcement learning (RL) aims to learn policies from static datasets of previously collected trajectories. Existing methods for offline RL either constrain the learned policy to the support of offline data or utilize model-based virtual environments to generate simulated rollouts. However, these methods suffer from (i) poor generalization to unseen states; and (ii) trivial improvement from low-qualified rollout simulation. In this paper, we propose offline trajectory generalization through world transformers for offline reinforcement learning (OTTO). Specifically, we use casual Transformers, a.k.a. World Transformers, to predict state dynamics and the immediate reward. Then we propose four strategies to use World Transformers to generate high-rewarded trajectory simulation by perturbing the offline data. Finally, we jointly use offline data with simulated data to train an offline RL algorithm. OTTO serves as a plug-in module and can be integrated with existing offline RL methods to enhance them with better generalization capability of transformers and high-rewarded data augmentation. Conducting extensive experiments on D4RL benchmark datasets, we verify that OTTO significantly outperforms state-of-the-art offline RL methods.
Abstract:The intricate and multi-stage task in dynamic public spaces like luggage trolley collection in airports presents both a promising opportunity and an ongoing challenge for automated service robots. Previous research has primarily focused on handling a single trolley or individual functional components, creating a gap in providing cost-effective and efficient solutions for practical scenarios. In this paper, we propose a mobile manipulation robot incorporated with an autonomy framework for the collection and transportation of multiple trolleys that can significantly enhance operational efficiency. We address the key challenges in the trolley collection problem through the novel design of the mechanical system and the vision-based control strategy. We design a lightweight manipulator and docking mechanism, optimized for the sequential stacking and transportation of multiple trolleys. Additionally, based on the Control Lyapunov Function and Control Barrier Function, we propose a novel vision-based control with the online Quadratic Programming which significantly improves the accuracy and efficiency of the collection process. The practical application of our system is demonstrated in real world scenarios, where it successfully executes multiple-trolley collection tasks.
Abstract:Session-based recommendation predicts users' future interests from previous interactions in a session. Despite the memorizing of historical samples, the request of unlearning, i.e., to remove the effect of certain training samples, also occurs for reasons such as user privacy or model fidelity. However, existing studies on unlearning are not tailored for the session-based recommendation. On the one hand, these approaches cannot achieve satisfying unlearning effects due to the collaborative correlations and sequential connections between the unlearning item and the remaining items in the session. On the other hand, seldom work has conducted the research to verify the unlearning effectiveness in the session-based recommendation scenario. In this paper, we propose SRU, a session-based recommendation unlearning framework, which enables high unlearning efficiency, accurate recommendation performance, and improved unlearning effectiveness in session-based recommendation. Specifically, we first partition the training sessions into separate sub-models according to the similarity across the sessions, then we utilize an attention-based aggregation layer to fuse the hidden states according to the correlations between the session and the centroid of the data in the sub-model. To improve the unlearning effectiveness, we further propose three extra data deletion strategies, including collaborative extra deletion (CED), neighbor extra deletion (NED), and random extra deletion (RED). Besides, we propose an evaluation metric that measures whether the unlearning sample can be inferred after the data deletion to verify the unlearning effectiveness. We implement SRU with three representative session-based recommendation models and conduct experiments on three benchmark datasets. Experimental results demonstrate the effectiveness of our methods.
Abstract:Few-shot named entity recognition (NER) has shown remarkable progress in identifying entities in low-resource domains. However, few-shot NER methods still struggle with out-of-domain (OOD) examples due to their reliance on manual labeling for the target domain. To address this limitation, recent studies enable generalization to an unseen target domain with only a few labeled examples using data augmentation techniques. Two important challenges remain: First, augmentation is limited to the training data, resulting in minimal overlap between the generated data and OOD examples. Second, knowledge transfer is implicit and insufficient, severely hindering model generalizability and the integration of knowledge from the source domain. In this paper, we propose a framework, prompt learning with type-related features (PLTR), to address these challenges. To identify useful knowledge in the source domain and enhance knowledge transfer, PLTR automatically extracts entity type-related features (TRFs) based on mutual information criteria. To bridge the gap between training and OOD data, PLTR generates a unique prompt for each unseen example by selecting relevant TRFs. We show that PLTR achieves significant performance improvements on in-domain and cross-domain datasets. The use of PLTR facilitates model adaptation and increases representation similarities between the source and unseen domains.
Abstract:Floor labels of crowdsourced RF signals are crucial for many smart-city applications, such as multi-floor indoor localization, geofencing, and robot surveillance. To build a prediction model to identify the floor number of a new RF signal upon its measurement, conventional approaches using the crowdsourced RF signals assume that at least few labeled signal samples are available on each floor. In this work, we push the envelope further and demonstrate that it is technically feasible to enable such floor identification with only one floor-labeled signal sample on the bottom floor while having the rest of signal samples unlabeled. We propose FIS-ONE, a novel floor identification system with only one labeled sample. FIS-ONE consists of two steps, namely signal clustering and cluster indexing. We first build a bipartite graph to model the RF signal samples and obtain a latent representation of each node (each signal sample) using our attention-based graph neural network model so that the RF signal samples can be clustered more accurately. Then, we tackle the problem of indexing the clusters with proper floor labels, by leveraging the observation that signals from an access point can be detected on different floors, i.e., signal spillover. Specifically, we formulate a cluster indexing problem as a combinatorial optimization problem and show that it is equivalent to solving a traveling salesman problem, whose (near-)optimal solution can be found efficiently. We have implemented FIS-ONE and validated its effectiveness on the Microsoft dataset and in three large shopping malls. Our results show that FIS-ONE outperforms other baseline algorithms significantly, with up to 23% improvement in adjusted rand index and 25% improvement in normalized mutual information using only one floor-labeled signal sample.
Abstract:Deep learning models developed for time-series associated tasks have become more widely researched nowadays. However, due to the unintuitive nature of time-series data, the interpretability problem -- where we understand what is under the hood of these models -- becomes crucial. The advancement of similar studies in computer vision has given rise to many post-hoc methods, which can also shed light on how to explain time-series models. In this paper, we present a wide range of post-hoc interpretation methods for time-series models based on backpropagation, perturbation, and approximation. We also want to bring focus onto inherently interpretable models, a novel category of interpretation where human-understandable information is designed within the models. Furthermore, we introduce some common evaluation metrics used for the explanations, and propose several directions of future researches on the time-series interpretability problem. As a highlight, our work summarizes not only the well-established interpretation methods, but also a handful of fairly recent and under-developed techniques, which we hope to capture their essence and spark future endeavours to innovate and improvise.
Abstract:Cooperative object transportation using multiple robots has been intensively studied in the control and robotics literature, but most approaches are either only applicable to omnidirectional robots or lack a complete navigation and decision-making framework that operates in real time. This paper presents an autonomous nonholonomic multi-robot system and an end-to-end hierarchical autonomy framework for collaborative luggage trolley transportation. This framework finds kinematic-feasible paths, computes online motion plans, and provides feedback that enables the multi-robot system to handle long lines of luggage trolleys and navigate obstacles and pedestrians while dealing with multiple inherently complex and coupled constraints. We demonstrate the designed collaborative trolley transportation system through practical transportation tasks, and the experiment results reveal their effectiveness and reliability in complex and dynamic environments.