Abstract:Subgroup discovery is a descriptive and exploratory data mining technique to identify subgroups in a population that exhibit interesting behavior with respect to a variable of interest. Subgroup discovery has numerous applications in knowledge discovery and hypothesis generation, yet it remains inapplicable for unstructured, high-dimensional data such as images. This is because subgroup discovery algorithms rely on defining descriptive rules based on (attribute, value) pairs, however, in unstructured data, an attribute is not well defined. Even in cases where the notion of attribute intuitively exists in the data, such as a pixel in an image, due to the high dimensionality of the data, these attributes are not informative enough to be used in a rule. In this paper, we introduce the subgroup-aware variational autoencoder, a novel variational autoencoder that learns a representation of unstructured data which leads to subgroups with higher quality. Our experimental results demonstrate the effectiveness of the method at learning subgroups with high quality while supporting the interpretability of the concepts.
Abstract:Despite recent progress in artificial intelligence and machine learning, many state-of-the-art methods suffer from a lack of explainability and transparency. The ability to interpret the predictions made by machine learning models and accurately evaluate these models is crucially important. In this paper, we present an interactive visualization tool to elucidate the training process of active learning. This tool enables one to select a sample of interesting data points, view how their prediction values change at different querying stages, and thus better understand when and how active learning works. Additionally, users can utilize this tool to compare different active learning strategies simultaneously and inspect why some strategies outperform others in certain contexts. With some preliminary experiments, we demonstrate that our visualization panel has a great potential to be used in various active learning experiments and help users evaluate their models appropriately.
Abstract:Model interpretation, or explanation of a machine learning classifier, aims to extract generalizable knowledge from a trained classifier into a human-understandable format, for various purposes such as model assessment, debugging and trust. From a computaional viewpoint, it is formulated as approximating the target classifier using a simpler interpretable model, such as rule models like a decision set/list/tree. Often, this approximation is handled as standard supervised learning and the only difference is that the labels are provided by the target classifier instead of ground truth. This paradigm is particularly popular because there exists a variety of well-studied supervised algorithms for learning an interpretable classifier. However, we argue that this paradigm is suboptimal for it does not utilize the unique property of the model interpretation problem, that is, the ability to generate synthetic instances and query the target classifier for their labels. We call this the active-query property, suggesting that we should consider model interpretation from an active learning perspective. Following this insight, we argue that the active-query property should be employed when designing a model interpretation algorithm, and that the generation of synthetic instances should be integrated seamlessly with the algorithm that learns the model interpretation. In this paper, we demonstrate that by doing so, it is possible to achieve more faithful interpretation with simpler model complexity. As a technical contribution, we present an active algorithm Active Decision Set Induction (ADS) to learn a decision set, a set of if-else rules, for model interpretation. ADS performs a local search over the space of all decision sets. In every iteration, ADS computes confidence intervals for the value of the objective function of all local actions and utilizes active-query to determine the best one.