Abstract:The past few decades have witnessed an upsurge in data, forming the foundation for data-hungry, learning-based AI technology. Conversational agents, often referred to as AI chatbots, rely heavily on such data to train large language models (LLMs) and generate new content (knowledge) in response to user prompts. With the advent of OpenAI's ChatGPT, LLM-based chatbots have set new standards in the AI community. This paper presents a complete survey of the evolution and deployment of LLM-based chatbots in various sectors. We first summarize the development of foundational chatbots, followed by the evolution of LLMs, and then provide an overview of LLM-based chatbots currently in use and those in the development phase. Recognizing AI chatbots as tools for generating new knowledge, we explore their diverse applications across various industries. We then discuss the open challenges, considering how the data used to train the LLMs and the misuse of the generated knowledge can cause several issues. Finally, we explore the future outlook to augment their efficiency and reliability in numerous applications. By addressing key milestones and the present-day context of LLM-based chatbots, our survey invites readers to delve deeper into this realm, reflecting on how their next generation will reshape conversational AI.
Abstract:Federated learning (FL) facilitates a privacy-preserving neural network training paradigm through collaboration between edge clients and a central server. One significant challenge is that the distributed data is not independently and identically distributed (non-IID), typically including both intra-domain and inter-domain heterogeneity. However, recent research is limited to simply using averaged signals as a form of regularization and only focusing on one aspect of these non-IID challenges. Given these limitations, this paper clarifies these two non-IID challenges and attempts to introduce cluster representation to address them from both local and global perspectives. Specifically, we propose a dual-clustered feature contrast-based FL framework with dual focuses. First, we employ clustering on the local representations of each client, aiming to capture intra-class information based on these local clusters at a high level of granularity. Then, we facilitate cross-client knowledge sharing by pulling the local representation closer to clusters shared by clients with similar semantics while pushing them away from clusters with dissimilar semantics. Second, since the sizes of local clusters belonging to the same class may differ for each client, we further utilize clustering on the global side and conduct averaging to create a consistent global signal for guiding each local training in a contrastive manner. Experimental results on multiple datasets demonstrate that our proposal achieves comparable or superior performance gain under intra-domain and inter-domain heterogeneity.
Abstract:Federated learning (FL) is a privacy-preserving distributed framework for collaborative model training on devices in edge networks. However, challenges arise due to vulnerability to adversarial examples (AEs) and the non-independent and identically distributed (non-IID) nature of data distribution among devices, hindering the deployment of adversarially robust and accurate learning models at the edge. While adversarial training (AT) is commonly acknowledged as an effective defense strategy against adversarial attacks in centralized training, we shed light on the adverse effects of directly applying AT in FL that can severely compromise accuracy, especially in non-IID challenges. Given this limitation, this paper proposes FatCC, which incorporates local logit \underline{C}alibration and global feature \underline{C}ontrast into the vanilla federated adversarial training (\underline{FAT}) process from both logit and feature perspectives. This approach can effectively enhance the federated system's robust accuracy (RA) and clean accuracy (CA). First, we propose logit calibration, where the logits are calibrated during local adversarial updates, thereby improving adversarial robustness. Second, FatCC introduces feature contrast, which involves a global alignment term that aligns each local representation with unbiased global features, thus further enhancing robustness and accuracy in federated adversarial environments. Extensive experiments across multiple datasets demonstrate that FatCC achieves comparable or superior performance gains in both CA and RA compared to other baselines.
Abstract:There is a growing concern about applying batch normalization (BN) in adversarial training (AT), especially when the model is trained on both adversarial samples and clean samples (termed Hybrid-AT). With the assumption that adversarial and clean samples are from two different domains, a common practice in prior works is to adopt Dual BN, where BN and BN are used for adversarial and clean branches, respectively. A popular belief for motivating Dual BN is that estimating normalization statistics of this mixture distribution is challenging and thus disentangling it for normalization achieves stronger robustness. In contrast to this belief, we reveal that disentangling statistics plays a less role than disentangling affine parameters in model training. This finding aligns with prior work (Rebuffi et al., 2023), and we build upon their research for further investigations. We demonstrate that the domain gap between adversarial and clean samples is not very large, which is counter-intuitive considering the significant influence of adversarial perturbation on the model accuracy. We further propose a two-task hypothesis which serves as the empirical foundation and a unified framework for Hybrid-AT improvement. We also investigate Dual BN in test-time and reveal that affine parameters characterize the robustness during inference. Overall, our work sheds new light on understanding the mechanism of Dual BN in Hybrid-AT and its underlying justification.
Abstract:Text-to-video generation marks a significant frontier in the rapidly evolving domain of generative AI, integrating advancements in text-to-image synthesis, video captioning, and text-guided editing. This survey critically examines the progression of text-to-video technologies, focusing on the shift from traditional generative models to the cutting-edge Sora model, highlighting developments in scalability and generalizability. Distinguishing our analysis from prior works, we offer an in-depth exploration of the technological frameworks and evolutionary pathways of these models. Additionally, we delve into practical applications and address ethical and technological challenges such as the inability to perform multiple entity handling, comprehend causal-effect learning, understand physical interaction, perceive object scaling and proportioning, and combat object hallucination which is also a long-standing problem in generative models. Our comprehensive discussion covers the topic of enablement of text-to-video generation models as human-assistive tools and world models, as well as eliciting model's shortcomings and summarizing future improvement direction that mainly centers around training datasets and evaluation metrics (both automatic and human-centered). Aimed at both newcomers and seasoned researchers, this survey seeks to catalyze further innovation and discussion in the growing field of text-to-video generation, paving the way for more reliable and practical generative artificial intelligence technologies.
Abstract:Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks. However, recent studies have shown that FL is vulnerable to adversarial examples (AEs), leading to a significant drop in its performance. Meanwhile, the non-independent and identically distributed (non-IID) challenge of data distribution between edge devices can further degrade the performance of models. Consequently, both AEs and non-IID pose challenges to deploying robust learning models at the edge. In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks, which can be termed as federated adversarial training (FAT). Moreover, we address the non-IID challenge by implementing a simple yet effective logits calibration strategy under the FAT framework, which can enhance the robustness of models when subjected to adversarial attacks. Specifically, we employ a direct strategy to adjust the logits output by assigning higher weights to classes with small samples during training. This approach effectively tackles the class imbalance in the training data, with the goal of mitigating biases between local and global models. Experimental results on three dataset benchmarks, MNIST, Fashion-MNIST, and CIFAR-10 show that our strategy achieves competitive results in natural and robust accuracy compared to several baselines.
Abstract:Segment anything model (SAM) addresses two practical yet challenging segmentation tasks: \textbf{segment anything (SegAny)}, which utilizes a certain point to predict the mask for a single object of interest, and \textbf{segment everything (SegEvery)}, which predicts the masks for all objects on the image. What makes SegAny slow for SAM is its heavyweight image encoder, which has been addressed by MobileSAM via decoupled knowledge distillation. The efficiency bottleneck of SegEvery with SAM, however, lies in its mask decoder because it needs to first generate numerous masks with redundant grid-search prompts and then perform filtering to obtain the final valid masks. We propose to improve its efficiency by directly generating the final masks with only valid prompts, which can be obtained through object discovery. Our proposed approach not only helps reduce the total time on the mask decoder by at least 16 times but also achieves superior performance. Specifically, our approach yields an average performance boost of 3.6\% (42.5\% \textit{v.s.} 38.9\%) for zero-shot object proposal on the LVIS dataset with the mask AR@$K$ metric. Qualitative results show that our approach generates fine-grained masks while avoiding over-segmenting things. This project targeting faster SegEvery than the original SAM is termed MobileSAMv2 to differentiate from MobileSAM which targets faster SegAny. Moreover, we demonstrate that our new prompt sampling is also compatible with the distilled image encoders in MobileSAM, contributing to a unified framework for efficient SegAny and SegEvery. The code is available at the same link as MobileSAM Project \href{https://github.com/ChaoningZhang/MobileSAM}{\textcolor{red}{https://github.com/ChaoningZhang/MobileSAM}}. \end{abstract}
Abstract:Single Image Reflection Removal (SIRR) in real-world images is a challenging task due to diverse image degradations occurring on the glass surface during light transmission and reflection. Many existing methods rely on specific prior assumptions to resolve the problem. In this paper, we propose a general reflection intensity prior that captures the intensity of the reflection phenomenon and demonstrate its effectiveness. To learn the reflection intensity prior, we introduce the Reflection Prior Extraction Network (RPEN). By segmenting images into regional patches, RPEN learns non-uniform reflection prior in an image. We propose Prior-based Reflection Removal Network (PRRN) using a simple transformer U-Net architecture that adapts reflection prior fed from RPEN. Experimental results on real-world benchmarks demonstrate the effectiveness of our approach achieving state-of-the-art accuracy in SIRR.
Abstract:Diffusion models have shown great potential for vision-related tasks, particularly for image generation. However, their training is typically conducted in a centralized manner, relying on data collected from publicly available sources. This approach may not be feasible or practical in many domains, such as the medical field, which involves privacy concerns over data collection. Despite the challenges associated with privacy-sensitive data, such domains could still benefit from valuable vision services provided by diffusion models. Federated learning (FL) plays a crucial role in enabling decentralized model training without compromising data privacy. Instead of collecting data, an FL system gathers model parameters, effectively safeguarding the private data of different parties involved. This makes FL systems vital for managing decentralized learning tasks, especially in scenarios where privacy-sensitive data is distributed across a network of clients. Nonetheless, FL presents its own set of challenges due to its distributed nature and privacy-preserving properties. Therefore, in this study, we explore the FL strategy to train diffusion models, paving the way for the development of federated diffusion models. We conduct experiments on various FL scenarios, and our findings demonstrate that federated diffusion models have great potential to deliver vision services to privacy-sensitive domains.
Abstract:As Segment Anything Model (SAM) becomes a popular foundation model in computer vision, its adversarial robustness has become a concern that cannot be ignored. This works investigates whether it is possible to attack SAM with image-agnostic Universal Adversarial Perturbation (UAP). In other words, we seek a single perturbation that can fool the SAM to predict invalid masks for most (if not all) images. We demonstrate convetional image-centric attack framework is effective for image-independent attacks but fails for universal adversarial attack. To this end, we propose a novel perturbation-centric framework that results in a UAP generation method based on self-supervised contrastive learning (CL), where the UAP is set to the anchor sample and the positive sample is augmented from the UAP. The representations of negative samples are obtained from the image encoder in advance and saved in a memory bank. The effectiveness of our proposed CL-based UAP generation method is validated by both quantitative and qualitative results. On top of the ablation study to understand various components in our proposed method, we shed light on the roles of positive and negative samples in making the generated UAP effective for attacking SAM.