Abstract:With the growing demand for solutions to real-world video challenges, interest in dense video captioning (DVC) has been on the rise. DVC involves the automatic captioning and localization of untrimmed videos. Several studies highlight the challenges of DVC and introduce improved methods utilizing prior knowledge, such as pre-training and external memory. In this research, we propose a model that leverages the prior knowledge of human-oriented hierarchical compact memory inspired by human memory hierarchy and cognition. To mimic human-like memory recall, we construct a hierarchical memory and a hierarchical memory reading module. We build an efficient hierarchical compact memory by employing clustering of memory events and summarization using large language models. Comparative experiments demonstrate that this hierarchical memory recall process improves the performance of DVC by achieving state-of-the-art performance on YouCook2 and ViTT datasets.
Abstract:Optimal control plays a crucial role in numerous mechanical and robotic applications. Broadly, optimal control methods are divided into direct methods (which optimize trajectories directly via discretization) and indirect methods (which transform optimality conditions into equations that guarantee optimal trajectories). While direct methods could mask geometric insights into system dynamics due to discretization, indirect methods offer a deeper understanding of the system's geometry. In this paper, we propose a geometric framework for understanding optimal control in mechanical systems, focusing on the combined effects of inertia, drag, and gravitational forces. By modeling mechanical systems as configuration manifolds equipped with kinetic and drag metrics, alongside a potential field, we explore how these factors influence trajectory optimization. We derive optimal control equations incorporating these effects and apply them to two-link and UR5 robotic manipulators, demonstrating how manifold curvature and resistive forces shape optimal trajectories. This work offers a comprehensive geometric approach to optimal control, with broad applications to robotic systems.
Abstract:For automatic human figure drawing (HFD) assessment tasks, such as diagnosing autism spectrum disorder (ASD) using HFD images, the clarity and explainability of a model decision are crucial. Existing pixel-level attribution-based explainable AI (XAI) approaches demand considerable effort from users to interpret the semantic information of a region in an image, which can be often time-consuming and impractical. To overcome this challenge, we propose a part contribution evaluation based model explanation (PCEvE) framework. On top of the part detection, we measure the Shapley Value of each individual part to evaluate the contribution to a model decision. Unlike existing attribution-based XAI approaches, the PCEvE provides a straightforward explanation of a model decision, i.e., a part contribution histogram. Furthermore, the PCEvE expands the scope of explanations beyond the conventional sample-level to include class-level and task-level insights, offering a richer, more comprehensive understanding of model behavior. We rigorously validate the PCEvE via extensive experiments on multiple HFD assessment datasets. Also, we sanity-check the proposed method with a set of controlled experiments. Additionally, we demonstrate the versatility and applicability of our method to other domains by applying it to a photo-realistic dataset, the Stanford Cars.
Abstract:Robotic locomotion often relies on sequenced gaits to efficiently convert control input into desired motion. Despite extensive studies on gait optimization, achieving smooth and efficient gait transitions remains challenging. In this paper, we propose a general solver based on geometric optimal control methods, leveraging insights from previous works on gait efficiency. Building upon our previous work, we express the effort to execute the trajectory as distinct geometric objects, transforming the optimization problems into boundary value problems. To validate our approach, we generate gait transition trajectories for three-link swimmers across various fluid environments. This work provides insights into optimal trajectory geometries and mechanical considerations for robotic locomotion.
Abstract:In this work, we tackle the problem of long-form video-language grounding (VLG). Given a long-form video and a natural language query, a model should temporally localize the precise moment that answers the query. Humans can easily solve VLG tasks, even with arbitrarily long videos, by discarding irrelevant moments using extensive and robust knowledge gained from experience. Unlike humans, existing VLG methods are prone to fall into superficial cues learned from small-scale datasets, even when they are within irrelevant frames. To overcome this challenge, we propose EI-VLG, a VLG method that leverages richer textual information provided by a Multi-modal Large Language Model (MLLM) as a proxy for human experiences, helping to effectively exclude irrelevant frames. We validate the effectiveness of the proposed method via extensive experiments on a challenging EgoNLQ benchmark.
Abstract:Unsupervised domain adaptation (UDA) for semantic segmentation aims to transfer the pixel-wise knowledge from the labeled source domain to the unlabeled target domain. However, current UDA methods typically assume a shared label space between source and target, limiting their applicability in real-world scenarios where novel categories may emerge in the target domain. In this paper, we introduce Open-Set Domain Adaptation for Semantic Segmentation (OSDA-SS) for the first time, where the target domain includes unknown classes. We identify two major problems in the OSDA-SS scenario as follows: 1) the existing UDA methods struggle to predict the exact boundary of the unknown classes, and 2) they fail to accurately predict the shape of the unknown classes. To address these issues, we propose Boundary and Unknown Shape-Aware open-set domain adaptation, coined BUS. Our BUS can accurately discern the boundaries between known and unknown classes in a contrastive manner using a novel dilation-erosion-based contrastive loss. In addition, we propose OpenReMix, a new domain mixing augmentation method that guides our model to effectively learn domain and size-invariant features for improving the shape detection of the known and unknown classes. Through extensive experiments, we demonstrate that our proposed BUS effectively detects unknown classes in the challenging OSDA-SS scenario compared to the previous methods by a large margin. The code is available at https://github.com/KHU-AGI/BUS.
Abstract:There has been significant attention to the research on dense video captioning, which aims to automatically localize and caption all events within untrimmed video. Several studies introduce methods by designing dense video captioning as a multitasking problem of event localization and event captioning to consider inter-task relations. However, addressing both tasks using only visual input is challenging due to the lack of semantic content. In this study, we address this by proposing a novel framework inspired by the cognitive information processing of humans. Our model utilizes external memory to incorporate prior knowledge. The memory retrieval method is proposed with cross-modal video-to-text matching. To effectively incorporate retrieved text features, the versatile encoder and the decoder with visual and textual cross-attention modules are designed. Comparative experiments have been conducted to show the effectiveness of the proposed method on ActivityNet Captions and YouCook2 datasets. Experimental results show promising performance of our model without extensive pretraining from a large video dataset.
Abstract:Segment anything model (SAM) addresses two practical yet challenging segmentation tasks: \textbf{segment anything (SegAny)}, which utilizes a certain point to predict the mask for a single object of interest, and \textbf{segment everything (SegEvery)}, which predicts the masks for all objects on the image. What makes SegAny slow for SAM is its heavyweight image encoder, which has been addressed by MobileSAM via decoupled knowledge distillation. The efficiency bottleneck of SegEvery with SAM, however, lies in its mask decoder because it needs to first generate numerous masks with redundant grid-search prompts and then perform filtering to obtain the final valid masks. We propose to improve its efficiency by directly generating the final masks with only valid prompts, which can be obtained through object discovery. Our proposed approach not only helps reduce the total time on the mask decoder by at least 16 times but also achieves superior performance. Specifically, our approach yields an average performance boost of 3.6\% (42.5\% \textit{v.s.} 38.9\%) for zero-shot object proposal on the LVIS dataset with the mask AR@$K$ metric. Qualitative results show that our approach generates fine-grained masks while avoiding over-segmenting things. This project targeting faster SegEvery than the original SAM is termed MobileSAMv2 to differentiate from MobileSAM which targets faster SegAny. Moreover, we demonstrate that our new prompt sampling is also compatible with the distilled image encoders in MobileSAM, contributing to a unified framework for efficient SegAny and SegEvery. The code is available at the same link as MobileSAM Project \href{https://github.com/ChaoningZhang/MobileSAM}{\textcolor{red}{https://github.com/ChaoningZhang/MobileSAM}}. \end{abstract}
Abstract:When watching a video, humans can naturally extract human actions from the surrounding scene context, even when action-scene combinations are unusual. However, unlike humans, video action recognition models often learn scene-biased action representations from the spurious correlation in training data, leading to poor performance in out-of-context scenarios. While scene-debiased models achieve improved performance in out-of-context scenarios, they often overlook valuable scene information in the data. Addressing this challenge, we propose Disentangled VIdeo representations of Action and Scene (DEVIAS), which aims to achieve holistic video understanding. Disentangled action and scene representations with our method could provide flexibility to adjust the emphasis on action or scene information depending on downstream task and dataset characteristics. Disentangled action and scene representations could be beneficial for both in-context and out-of-context video understanding. To this end, we employ slot attention to learn disentangled action and scene representations with a single model, along with auxiliary tasks that further guide slot attention. We validate the proposed method on both in-context datasets: UCF-101 and Kinetics-400, and out-of-context datasets: SCUBA and HAT. Our proposed method shows favorable performance across different datasets compared to the baselines, demonstrating its effectiveness in diverse video understanding scenarios.
Abstract:Recognizing human actions in videos requires spatial and temporal understanding. Most existing action recognition models lack a balanced spatio-temporal understanding of videos. In this work, we propose a novel two-stream architecture, called Cross-Attention in Space and Time (CAST), that achieves a balanced spatio-temporal understanding of videos using only RGB input. Our proposed bottleneck cross-attention mechanism enables the spatial and temporal expert models to exchange information and make synergistic predictions, leading to improved performance. We validate the proposed method with extensive experiments on public benchmarks with different characteristics: EPIC-KITCHENS-100, Something-Something-V2, and Kinetics-400. Our method consistently shows favorable performance across these datasets, while the performance of existing methods fluctuates depending on the dataset characteristics.