Abstract:There is a growing concern about applying batch normalization (BN) in adversarial training (AT), especially when the model is trained on both adversarial samples and clean samples (termed Hybrid-AT). With the assumption that adversarial and clean samples are from two different domains, a common practice in prior works is to adopt Dual BN, where BN and BN are used for adversarial and clean branches, respectively. A popular belief for motivating Dual BN is that estimating normalization statistics of this mixture distribution is challenging and thus disentangling it for normalization achieves stronger robustness. In contrast to this belief, we reveal that disentangling statistics plays a less role than disentangling affine parameters in model training. This finding aligns with prior work (Rebuffi et al., 2023), and we build upon their research for further investigations. We demonstrate that the domain gap between adversarial and clean samples is not very large, which is counter-intuitive considering the significant influence of adversarial perturbation on the model accuracy. We further propose a two-task hypothesis which serves as the empirical foundation and a unified framework for Hybrid-AT improvement. We also investigate Dual BN in test-time and reveal that affine parameters characterize the robustness during inference. Overall, our work sheds new light on understanding the mechanism of Dual BN in Hybrid-AT and its underlying justification.
Abstract:It is well known the adversarial optimization of GAN-based image super-resolution (SR) methods makes the preceding SR model generate unpleasant and undesirable artifacts, leading to large distortion. We attribute the cause of such distortions to the poor calibration of the discriminator, which hampers its ability to provide meaningful feedback to the generator for learning high-quality images. To address this problem, we propose a simple but non-travel diffusion-style data augmentation scheme for current GAN-based SR methods, known as DifAugGAN. It involves adapting the diffusion process in generative diffusion models for improving the calibration of the discriminator during training motivated by the successes of data augmentation schemes in the field to achieve good calibration. Our DifAugGAN can be a Plug-and-Play strategy for current GAN-based SISR methods to improve the calibration of the discriminator and thus improve SR performance. Extensive experimental evaluations demonstrate the superiority of DifAugGAN over state-of-the-art GAN-based SISR methods across both synthetic and real-world datasets, showcasing notable advancements in both qualitative and quantitative results.
Abstract:The Joint Detection and Embedding (JDE) framework has achieved remarkable progress for multiple object tracking. Existing methods often employ extracted embeddings to re-establish associations between new detections and previously disrupted tracks. However, the reliability of embeddings diminishes when the region of the occluded object frequently contains adjacent objects or clutters, especially in scenarios with severe occlusion. To alleviate this problem, we propose a novel multiple object tracking method based on visual embedding consistency, mainly including: 1) Occlusion Prediction Module (OPM) and 2) Occlusion-Aware Association Module (OAAM). The OPM predicts occlusion information for each true detection, facilitating the selection of valid samples for consistency learning of the track's visual embedding. The OAAM leverages occlusion cues and visual embeddings to generate two separate embeddings for each track, guaranteeing consistency in both unoccluded and occluded detections. By integrating these two modules, our method is capable of addressing track interruptions caused by occlusion in online tracking scenarios. Extensive experimental results demonstrate that our approach achieves promising performance levels in both unoccluded and occluded tracking scenarios.
Abstract:Diffusion models have gained significant popularity in the field of image-to-image translation. Previous efforts applying diffusion models to image super-resolution (SR) have demonstrated that iteratively refining pure Gaussian noise using a U-Net architecture trained on denoising at various noise levels can yield satisfactory high-resolution images from low-resolution inputs. However, this iterative refinement process comes with the drawback of low inference speed, which strongly limits its applications. To speed up inference and further enhance the performance, our research revisits diffusion models in image super-resolution and proposes a straightforward yet significant diffusion model-based super-resolution method called ACDMSR (accelerated conditional diffusion model for image super-resolution). Specifically, our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process. Our study also highlights the effectiveness of using a pre-trained SR model to provide the conditional image of the given low-resolution (LR) image to achieve superior high-resolution results. We demonstrate that our method surpasses previous attempts in qualitative and quantitative results through extensive experiments conducted on benchmark datasets such as Set5, Set14, Urban100, BSD100, and Manga109. Moreover, our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
Abstract:Currently, there are two popular approaches for addressing real-world image super-resolution problems: degradation-estimation-based and blind-based methods. However, degradation-estimation-based methods may be inaccurate in estimating the degradation, making them less applicable to real-world LR images. On the other hand, blind-based methods are often limited by their fixed single perception information, which hinders their ability to handle diverse perceptual characteristics. To overcome this limitation, we propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images. Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information and a series of newly-designed Cross-Perception Blocks (CPB) to combine this information for effective super-resolution reconstruction. Additionally, we introduce a contrastive regularization term (CR) that improves the model's learning capability by using newly generated HR and LR images as positive and negative samples for ground truth HR. Experimental results on challenging real-world SR datasets demonstrate that our approach significantly outperforms existing state-of-the-art methods in both qualitative and quantitative measures.
Abstract:Recently, many works have designed wider and deeper networks to achieve higher image super-resolution performance. Despite their outstanding performance, they still suffer from high computational resources, preventing them from directly applying to embedded devices. To reduce the computation resources and maintain performance, we propose a novel Ghost Residual Attention Network (GRAN) for efficient super-resolution. This paper introduces Ghost Residual Attention Block (GRAB) groups to overcome the drawbacks of the standard convolutional operation, i.e., redundancy of the intermediate feature. GRAB consists of the Ghost Module and Channel and Spatial Attention Module (CSAM) to alleviate the generation of redundant features. Specifically, Ghost Module can reveal information underlying intrinsic features by employing linear operations to replace the standard convolutions. Reducing redundant features by the Ghost Module, our model decreases memory and computing resource requirements in the network. The CSAM pays more comprehensive attention to where and what the feature extraction is, which is critical to recovering the image details. Experiments conducted on the benchmark datasets demonstrate the superior performance of our method in both qualitative and quantitative. Compared to the baseline models, we achieve higher performance with lower computational resources, whose parameters and FLOPs have decreased by more than ten times.
Abstract:Diffusion probabilistic models (DPM) have been widely adopted in image-to-image translation to generate high-quality images. Prior attempts at applying the DPM to image super-resolution (SR) have shown that iteratively refining a pure Gaussian noise with a conditional image using a U-Net trained on denoising at various-level noises can help obtain a satisfied high-resolution image for the low-resolution one. To further improve the performance and simplify current DPM-based super-resolution methods, we propose a simple but non-trivial DPM-based super-resolution post-process framework,i.e., cDPMSR. After applying a pre-trained SR model on the to-be-test LR image to provide the conditional input, we adapt the standard DPM to conduct conditional image generation and perform super-resolution through a deterministic iterative denoising process. Our method surpasses prior attempts on both qualitative and quantitative results and can generate more photo-realistic counterparts for the low-resolution images with various benchmark datasets including Set5, Set14, Urban100, BSD100, and Manga109. Code will be published after accepted.
Abstract:Self-supervised learning (SSL) approaches have shown promising capabilities in learning the representation from unlabeled data. Amongst them, momentum-based frameworks have attracted significant attention. Despite being a great success, these momentum-based SSL frameworks suffer from a large gap in representation between the online encoder (student) and the momentum encoder (teacher), which hinders performance on downstream tasks. This paper is the first to investigate and identify this invisible gap as a bottleneck that has been overlooked in the existing SSL frameworks, potentially preventing the models from learning good representation. To solve this problem, we propose "residual momentum" to directly reduce this gap to encourage the student to learn the representation as close to that of the teacher as possible, narrow the performance gap with the teacher, and significantly improve the existing SSL. Our method is straightforward, easy to implement, and can be easily plugged into other SSL frameworks. Extensive experimental results on numerous benchmark datasets and diverse network architectures have demonstrated the effectiveness of our method over the state-of-the-art contrastive learning baselines.
Abstract:Exponential Moving Average (EMA or momentum) is widely used in modern self-supervised learning (SSL) approaches, such as MoCo, for enhancing performance. We demonstrate that such momentum can also be plugged into momentum-free SSL frameworks, such as SimCLR, for a performance boost. Despite its wide use as a fundamental component in modern SSL frameworks, the benefit caused by momentum is not well understood. We find that its success can be at least partly attributed to the stability effect. In the first attempt, we analyze how EMA affects each part of the encoder and reveal that the portion near the encoder's input plays an insignificant role while the latter parts have much more influence. By monitoring the gradient of the overall loss with respect to the output of each block in the encoder, we observe that the final layers tend to fluctuate much more than other layers during backpropagation, i.e. less stability. Interestingly, we show that using EMA to the final part of the SSL encoder, i.e. projector, instead of the whole deep network encoder can give comparable or preferable performance. Our proposed projector-only momentum helps maintain the benefit of EMA but avoids the double forward computation.
Abstract:Adversarial training (AT) for robust representation learning and self-supervised learning (SSL) for unsupervised representation learning are two active research fields. Integrating AT into SSL, multiple prior works have accomplished a highly significant yet challenging task: learning robust representation without labels. A widely used framework is adversarial contrastive learning which couples AT and SSL, and thus constitute a very complex optimization problem. Inspired by the divide-and-conquer philosophy, we conjecture that it might be simplified as well as improved by solving two sub-problems: non-robust SSL and pseudo-supervised AT. This motivation shifts the focus of the task from seeking an optimal integrating strategy for a coupled problem to finding sub-solutions for sub-problems. With this said, this work discards prior practices of directly introducing AT to SSL frameworks and proposed a two-stage framework termed Decoupled Adversarial Contrastive Learning (DeACL). Extensive experimental results demonstrate that our DeACL achieves SOTA self-supervised adversarial robustness while significantly reducing the training time, which validates its effectiveness and efficiency. Moreover, our DeACL constitutes a more explainable solution, and its success also bridges the gap with semi-supervised AT for exploiting unlabeled samples for robust representation learning. The code is publicly accessible at https://github.com/pantheon5100/DeACL.