Abstract:The group recommendation (GR) aims to suggest items for a group of users in social networks. Existing work typically considers individual preferences as the sole factor in aggregating group preferences. Actually, social influence is also an important factor in modeling users' contributions to the final group decision. However, existing methods either neglect the social influence of individual members or bundle preferences and social influence together as a unified representation. As a result, these models emphasize the preferences of the majority within the group rather than the actual interaction items, which we refer to as the preference bias issue in GR. Moreover, the self-supervised learning (SSL) strategies they designed to address the issue of group data sparsity fail to account for users' contextual social weights when regulating group representations, leading to suboptimal results. To tackle these issues, we propose a novel model based on Disentangled Modeling of Preferences and Social Influence for Group Recommendation (DisRec). Concretely, we first design a user-level disentangling network to disentangle the preferences and social influence of group members with separate embedding propagation schemes based on (hyper)graph convolution networks. We then introduce a socialbased contrastive learning strategy, selectively excluding user nodes based on their social importance to enhance group representations and alleviate the group-level data sparsity issue. The experimental results demonstrate that our model significantly outperforms state-of-the-art methods on two realworld datasets.
Abstract:Recently, making recommendations for ephemeral groups which contain dynamic users and few historic interactions have received an increasing number of attention. The main challenge of ephemeral group recommender is how to aggregate individual preferences to represent the group's overall preference. Score aggregation and preference aggregation are two commonly-used methods that adopt hand-craft predefined strategies and data-driven strategies, respectively. However, they neglect to take into account the importance of the individual inherent factors such as personality in the group. In addition, they fail to work well due to a small number of interactive records. To address these issues, we propose a Personality-Guided Preference Aggregator (PEGA) for ephemeral group recommendation. Concretely, we first adopt hyper-rectangle to define the concept of Group Personality. We then use the personality attention mechanism to aggregate group preferences. The role of personality in our approach is twofold: (1) To estimate individual users' importance in a group and provide explainability; (2) to alleviate the data sparsity issue that occurred in ephemeral groups. The experimental results demonstrate that our model significantly outperforms the state-of-the-art methods w.r.t. the score of both Recall and NDCG on Amazon and Yelp datasets.