Abstract:In this letter, we investigate the channel estimation problem for MIMO wireless communication systems with movable antennas (MAs) at both the transmitter (Tx) and receiver (Rx). To achieve high channel estimation accuracy with low pilot training overhead, we propose a tensor decomposition-based method for estimating the parameters of multi-path channel components, including their azimuth and elevation angles, as well as complex gain coefficients, thereby reconstructing the wireless channel between any pair of Tx and Rx MA positions in the Tx and Rx regions. First, we introduce a two-stage Tx-Rx successive antenna movement pattern for pilot training, such that the received pilot signals in both stages can be expressed as a third-order tensor. Then, we obtain the factor matrices of the tensor via the canonical polyadic decomposition, and thereby estimate the angle/gain parameters for enabling the channel reconstruction between arbitrary Tx/Rx MA positions. In addition, we analyze the uniqueness condition of the tensor decomposition, which ensures the complete channel reconstruction between the whole Tx and Rx regions based on the channel measurements at only a finite number of Tx/Rx MA positions. Finally, simulation results are presented to evaluate the proposed tensor decomposition-based method as compared to existing methods, in terms of channel estimation accuracy and pilot overhead.
Abstract:In this correspondence, we investigate an intelligent reflective surface (IRS) assisted downlink ultra-reliable and low-latency communication (URLLC) system, where an access point (AP) sends short packets to multiple devices with the help of an IRS. Specifically, a performance comparison between the frequency division multiple access (FDMA) and time division multiple access (TDMA) is conducted for the considered system, from the perspective of average age of information (AoI). Aiming to minimize the maximum average AoI among all devices by jointly optimizing the resource allocation and passive beamforming. However, the formulated problem is difficult to solve due to the non-convex objective function and coupled variables. Thus, we propose an alternating optimization based algorithm by dividing the original problem into two sub-problems which can be efficiently solved. Simulation results show that TDMA can achieve lower AoI by exploiting the time-selective passive beamforming of IRS for maximizing the signal to noise ratio (SNR) of each device consecutively. Moreover, it also shows that as the length of information bits becomes sufficiently large as compared to the available bandwidth, the proposed FDMA transmission scheme becomes more favorable instead, due to the more effective utilization of bandwidth.
Abstract:Traffic learning and prediction is at the heart of the evaluation of the performance of telecommunications networks and attracts a lot of attention in wired broadband networks. Now, benefiting from the big data in cellular networks, it becomes possible to make the analyses one step further into the application level. In this paper, we firstly collect a significant amount of application-level traffic data from cellular network operators. Afterwards, with the aid of the traffic "big data", we make a comprehensive study over the modeling and prediction framework of cellular network traffic. Our results solidly demonstrate that there universally exist some traffic statistical modeling characteristics, including ALPHA-stable modeled property in the temporal domain and the sparsity in the spatial domain. Meanwhile, the results also demonstrate the distinctions originated from the uniqueness of different service types of applications. Furthermore, we propose a new traffic prediction framework to encompass and explore these aforementioned characteristics and then develop a dictionary learning-based alternating direction method to solve it. Besides, we validate the prediction accuracy improvement and the robustness of the proposed framework through extensive simulation results.