Abstract:Objective: Predicting children's future levels of externalizing problems helps to identify children at risk and guide targeted prevention. Existing studies have shown that mothers providing support in response to children's dysregulation was associated with children's lower levels of externalizing problems. The current study aims to evaluate and improve the accuracy of predicting children's externalizing problems with mother-child interaction dynamics. Method: This study used mother-child interaction dynamics during a challenging puzzle task to predict children's externalizing problems six months later (N=101, 46 boys, Mage=57.41 months, SD=6.58). Performance of the Residual Dynamic Structural Equation Model (RDSEM) was compared with the Attention-based Sequential Behavior Interaction Modeling (ASBIM) model, developed using the deep learning techniques. Results: The RDSEM revealed that children whose mothers provided more autonomy support after increases of child defeat had lower levels of externalizing problems. Five-fold cross-validation showed that the RDSEM had good prediction accuracy. The ASBIM model further improved prediction accuracy, especially after including child inhibitory control as a personalized individual feature. Conclusions: The dynamic process of mother-child interaction provides important information for predicting children's externalizing problems, especially maternal autonomy supportive response to child defeat. The deep learning model is a useful tool to further improve prediction accuracy.
Abstract:Multiphase contrast-enhanced computed tomography (CECT) scan is clinically significant to demonstrate the anatomy at different phases. In practice, such a multiphase CECT scan inherently takes longer time and deposits much more radiation dose into a patient body than a regular CT scan, and reduction of the radiation dose typically compromise the CECT image quality and its diagnostic value. With Joint Condition and Circle-Supervision, here we propose a novel Poisson Flow Generative Model (JCCS-PFGM) to promote the progressive low-dose reconstruction for multiphase CECT. JCCS-PFGM is characterized by the following three aspects: a progressive low-dose reconstruction scheme, a circle-supervision strategy, and a joint condition mechanism. Our extensive experiments are performed on a clinical dataset consisting of 11436 images. The results show that our JCCS-PFGM achieves promising PSNR up to 46.3dB, SSIM up to 98.5%, and MAE down to 9.67 HU averagely on phases I, II and III, in quantitative evaluations, as well as gains high-quality readable visualizations in qualitative assessments. All of these findings reveal our method a great potential to be adapted for clinical CECT scans at a much-reduced radiation dose.