Abstract:Lexicon-based constrained decoding approaches aim to control the meaning or style of the generated text through certain target concepts. Existing approaches over-focus the targets themselves, leading to a lack of high-level reasoning about how to achieve them. However, human usually tackles tasks by following certain rules that not only focuses on the targets but also on semantically relevant concepts that induce the occurrence of targets. In this work, we present DECIDER, a rule-controllable decoding strategy for constrained language generation inspired by dual-system cognitive theory. Specifically, in DECIDER, a pre-trained language model (PLM) is equiped with a logic reasoner that takes high-level rules as input. Then, the DECIDER allows rule signals to flow into the PLM at each decoding step. Extensive experimental results demonstrate that DECIDER can effectively follow given rules to guide generation direction toward the targets in a more human-like manner.
Abstract:Few-shot prompting elicits the remarkable abilities of large language models by equipping them with a few demonstration examples in the input. However, the traditional method of providing large language models with all demonstration input-output pairs at once may not effectively guide large language models to learn the specific input-output mapping relationship. In this paper, inspired by the regulatory and supportive role of metacognition in students' learning, we propose a novel metacognition-enhanced few-shot prompting, which guides large language models to reflect on their thought processes to comprehensively learn the given demonstration examples. Furthermore, considering that positive reinforcement can improve students' learning motivation, we introduce positive reinforcement into our metacognition-enhanced few-shot prompting to promote the few-shot learning of large language models by providing response-based positive feedback. The experimental results on two real-world datasets show that our metacognition-enhanced few-shot prompting with positive reinforcement surpasses traditional few-shot prompting in classification accuracy and macro F1.
Abstract:Bundle generation aims to provide a bundle of items for the user, and has been widely studied and applied on online service platforms. Existing bundle generation methods mainly utilized user's preference from historical interactions in common recommendation paradigm, and ignored the potential textual query which is user's current explicit intention. There can be a scenario in which a user proactively queries a bundle with some natural language description, the system should be able to generate a bundle that exactly matches the user's intention through the user's query and preferences. In this work, we define this user-friendly scenario as Query-based Bundle Generation task and propose a novel framework Text2Bundle that leverages both the user's short-term interests from the query and the user's long-term preferences from the historical interactions. Our framework consists of three modules: (1) a query interest extractor that mines the user's fine-grained interests from the query; (2) a unified state encoder that learns the current bundle context state and the user's preferences based on historical interaction and current query; and (3) a bundle generator that generates personalized and complementary bundles using a reinforcement learning with specifically designed rewards. We conduct extensive experiments on three real-world datasets and demonstrate the effectiveness of our framework compared with several state-of-the-art methods.
Abstract:Conversational recommendation systems (CRS) could acquire dynamic user preferences towards desired items through multi-round interactive dialogue. Previous CRS mainly focuses on the single conversation (subsession) that user quits after a successful recommendation, neglecting the common scenario where user has multiple conversations (multi-subsession) over a short period. Therefore, we propose a novel conversational recommendation scenario named Multi-Subsession Multi-round Conversational Recommendation (MSMCR), where user would still resort to CRS after several subsessions and might preserve vague interests, and system would proactively ask attributes to activate user interests in the current subsession. To fill the gap in this new CRS scenario, we devise a novel framework called Multi-Subsession Conversational Recommender with Activation Attributes (MSCAA). Specifically, we first develop a context-aware recommendation module, comprehensively modeling user interests from historical interactions, previous subsessions, and feedback in the current subsession. Furthermore, an attribute selection policy module is proposed to learn a flexible strategy for asking appropriate attributes to elicit user interests. Finally, we design a conversation policy module to manage the above two modules to decide actions between asking and recommending. Extensive experiments on four datasets verify the effectiveness of our MSCAA framework for the MSMCR setting.
Abstract:Reconstructing and tracking deformable surface with little or no texture has posed long-standing challenges. Fundamentally, the challenges stem from textureless surfaces lacking features for establishing cross-image correspondences. In this work, we present a novel type of markers to proactively enrich the object's surface features, and thereby ease the 3D surface reconstruction and correspondence tracking. Our markers are made of fluorescent dyes, visible only under the ultraviolet (UV) light and invisible under regular lighting condition. Leveraging the markers, we design a multi-camera system that captures surface deformation under the UV light and the visible light in a time multiplexing fashion. Under the UV light, markers on the object emerge to enrich its surface texture, allowing high-quality 3D shape reconstruction and tracking. Under the visible light, markers become invisible, allowing us to capture the object's original untouched appearance. We perform experiments on various challenging scenes, including hand gestures, facial expressions, waving cloth, and hand-object interaction. In all these cases, we demonstrate that our system is able to produce robust, high-quality 3D reconstruction and tracking.
Abstract:In recent years, personality has been regarded as a valuable personal factor being incorporated into numerous tasks such as sentiment analysis and product recommendation. This has led to widespread attention to text-based personality recognition task, which aims to identify an individual's personality based on given text. Considering that ChatGPT has recently exhibited remarkable abilities on various natural language processing tasks, we provide a preliminary evaluation of ChatGPT on text-based personality recognition task for generating effective personality data. Concretely, we employ a variety of prompting strategies to explore ChatGPT's ability in recognizing personality from given text, especially the level-oriented prompting strategy we designed for guiding ChatGPT in analyzing given text at a specified level. The experimental results on two representative real-world datasets reveal that ChatGPT with zero-shot chain-of-thought prompting exhibits impressive personality recognition ability and is capable to provide natural language explanations through text-based logical reasoning. Furthermore, by employing the level-oriented prompting strategy to optimize zero-shot chain-of-thought prompting, the performance gap between ChatGPT and corresponding state-of-the-art model has been narrowed even more. However, we observe that ChatGPT shows unfairness towards certain sensitive demographic attributes such as gender and age. Additionally, we discover that eliciting the personality recognition ability of ChatGPT helps improve its performance on personality-related downstream tasks such as sentiment classification and stress prediction.
Abstract:Sequential Recommendation is a prominent topic in current research, which uses user behavior sequence as an input to predict future behavior. By assessing the correlation strength of historical behavior through the dot product, the model based on the self-attention mechanism can capture the long-term preference of the sequence. However, it has two limitations. On the one hand, it does not effectively utilize the items' local context information when determining the attention and creating the sequence representation. On the other hand, the convolution and linear layers often contain redundant information, which limits the ability to encode sequences. In this paper, we propose a self-attentive sequential recommendation model based on cheap causal convolution. It utilizes causal convolutions to capture items' local information for calculating attention and generating sequence embedding. It also uses cheap convolutions to improve the representations by lightweight structure. We evaluate the effectiveness of the proposed model in terms of both accurate and calibrated sequential recommendation. Experiments on benchmark datasets show that the proposed model can perform better in single- and multi-objective recommendation scenarios.
Abstract:In the last few years, there have been many new developments and significant accomplishments in the research of bionic robot fishes. However, in terms of swimming performance, existing bionic robot fishes lag far behind fish, prompting researchers to constantly develop innovative designs of various bionic robot fishes. In this paper, the latest designs of robot fishes are presented in detail, distinguished by the propulsion mode. New robot fishes mainly include soft robot fishes and rigid-soft coupled robot fishes. The latest progress in the study of the swimming mechanism is analyzed on the basis of summarizing the main swimming theories of fish. The current state-of-the-art research in the new field of motion coordination and communication of multiple robot fishes is summarized. The general research trend in robot fishes is to utilize more efficient and robust methods to best mimic real fish while exhibiting superior swimming performance. The current challenges and potential future research directions are discussed. Various methods are needed to narrow the gap in swimming performance between robot fishes and fish. This paper is a first step to bring together roboticists and marine biologists interested in learning state-of-the-art research on bionic robot fishes.
Abstract:Underwater 3D reconstruction is challenging due to the refraction of light at the water-air interface (most electronic devices cannot be directly submerged in water). In this paper, we present an underwater 3D reconstruction solution using light field cameras. We first develop a light field camera calibration algorithm that simultaneously estimates the camera parameters and the geometry of the water-air interface. We then design a novel depth estimation algorithm for 3D reconstruction. Specifically, we match correspondences on curved epipolar lines caused by water refraction. We also observe that the view-dependent specular reflection is very weak in the underwater environment, resulting the angularly sampled rays in light field has uniform intensity. We therefore propose an angular uniformity constraint for depth optimization. We also develop a fast algorithm for locating the angular patches in presence of non-linear light paths. Extensive synthetic and real experiments demonstrate that our method can perform underwater 3D reconstruction with high accuracy.
Abstract:We present a novel Relightable Neural Renderer (RNR) for simultaneous view synthesis and relighting using multi-view image inputs. Existing neural rendering (NR) does not explicitly model the physical rendering process and hence has limited capabilities on relighting. RNR instead models image formation in terms of environment lighting, object intrinsic attributes, and the light transport function (LTF), each corresponding to a learnable component. In particular, the incorporation of a physically based rendering process not only enables relighting but also improves the quality of novel view synthesis. Comprehensive experiments on synthetic and real data show that RNR provides a practical and effective solution for conducting free-viewpoint relighting.