Abstract:The proliferation of Internet of Things (IoT) devices and the advent of 6G technologies have introduced computationally intensive tasks that often surpass the processing capabilities of user devices. Efficient and secure resource allocation in serverless multi-cloud edge computing environments is essential for supporting these demands and advancing distributed computing. However, existing solutions frequently struggle with the complexity of multi-cloud infrastructures, robust security integration, and effective application of traditional deep reinforcement learning (DRL) techniques under system constraints. To address these challenges, we present SARMTO, a novel framework that integrates an action-constrained DRL model. SARMTO dynamically balances resource allocation, task offloading, security, and performance by utilizing a Markov decision process formulation, an adaptive security mechanism, and sophisticated optimization techniques. Extensive simulations across varying scenarios, including different task loads, data sizes, and MEC capacities, show that SARMTO consistently outperforms five baseline approaches, achieving up to a 40% reduction in system costs and a 41.5% improvement in energy efficiency over state-of-the-art methods. These enhancements highlight SARMTO's potential to revolutionize resource management in intricate distributed computing environments, opening the door to more efficient and secure IoT and edge computing applications.
Abstract:In the rapidly evolving domain of satellite communications, integrating advanced machine learning techniques, particularly split learning, is crucial for enhancing data processing and model training efficiency across satellites, space stations, and ground stations. Traditional ML approaches often face significant challenges within satellite networks due to constraints such as limited bandwidth and computational resources. To address this gap, we propose a novel framework for more efficient SL in satellite communications. Our approach, Dynamic Topology Informed Pruning, namely DTIP, combines differential privacy with graph and model pruning to optimize graph neural networks for distributed learning. DTIP strategically applies differential privacy to raw graph data and prunes GNNs, thereby optimizing both model size and communication load across network tiers. Extensive experiments across diverse datasets demonstrate DTIP's efficacy in enhancing privacy, accuracy, and computational efficiency. Specifically, on Amazon2M dataset, DTIP maintains an accuracy of 0.82 while achieving a 50% reduction in floating-point operations per second. Similarly, on ArXiv dataset, DTIP achieves an accuracy of 0.85 under comparable conditions. Our framework not only significantly improves the operational efficiency of satellite communications but also establishes a new benchmark in privacy-aware distributed learning, potentially revolutionizing data handling in space-based networks.