Abstract:Task-oriented dialog systems have witnessed substantial progress due to conversational pre-training techniques. Yet, two significant challenges persist. First, most systems primarily utilize the latest turn's state label for the generator. This practice overlooks the comprehensive value of state labels in boosting the model's understanding for future generations. Second, an overreliance on generated policy often leads to error accumulation, resulting in suboptimal responses when adhering to incorrect actions. To combat these challenges, we propose turn-level multi-task objectives for the encoder. With the guidance of essential information from labeled intermediate states, we establish a more robust representation for both understanding and generation. For the decoder, we introduce an action tree-based scheduled sampling technique. Specifically, we model the hierarchical policy as trees and utilize the similarity between trees to sample negative policy based on scheduled sampling, hoping the model to generate invariant responses under perturbations. This method simulates potential pitfalls by sampling similar negative policy, bridging the gap between task-oriented dialog training and inference. Among methods without continual pre-training, our approach achieved state-of-the-art (SOTA) performance on the MultiWOZ dataset series and was also competitive with pre-trained SOTA methods.
Abstract:Training machines to understand natural language and interact with humans is one of the major goals of artificial intelligence. Recent years have witnessed an evolution from matching networks to pre-trained language models (PrLMs). In contrast to the plain-text modeling as the focus of the PrLMs, dialogue texts involve multiple speakers and reflect special characteristics such as topic transitions and structure dependencies between distant utterances. However, the related PrLM models commonly represent dialogues sequentially by processing the pairwise dialogue history as a whole. Thus the hierarchical information on either utterance interrelation or speaker roles coupled in such representations is not well addressed. In this work, we propose compositional learning for holistic interaction across the utterances beyond the sequential contextualization from PrLMs, in order to capture the utterance-aware and speaker-aware representations entailed in a dialogue history. We decouple the contextualized word representations by masking mechanisms in Transformer-based PrLM, making each word only focus on the words in current utterance, other utterances, and two speaker roles (i.e., utterances of sender and utterances of the receiver), respectively. In addition, we employ domain-adaptive training strategies to help the model adapt to the dialogue domains. Experimental results show that our method substantially boosts the strong PrLM baselines in four public benchmark datasets, achieving new state-of-the-art performance over previous methods.
Abstract:A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles. Thus utterance- and speaker-aware clues are supposed to be well captured in models. However, in the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely by taking the pairwise dialogue history and candidate response as a whole, the hierarchical information on either utterance interrelation or speaker roles coupled in such representations is not well addressed. In this work, we propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history. In detail, we decouple the contextualized word representations by masking mechanisms in Transformer-based PrLM, making each word only focus on the words in current utterance, other utterances, two speaker roles (i.e., utterances of sender and utterances of receiver), respectively. Experimental results show that our method boosts the strong ELECTRA baseline substantially in four public benchmark datasets, and achieves various new state-of-the-art performance over previous methods. A series of ablation studies are conducted to demonstrate the effectiveness of our method.