Abstract:Numerous locomotion controllers have been designed based on Reinforcement Learning (RL) to facilitate blind quadrupedal locomotion traversing challenging terrains. Nevertheless, locomotion control is still a challenging task for quadruped robots traversing diverse terrains amidst unforeseen disturbances. Recently, privileged learning has been employed to learn reliable and robust quadrupedal locomotion over various terrains based on a teacher-student architecture. However, its one-encoder structure is not adequate in addressing external force perturbations. The student policy would experience inevitable performance degradation due to the feature embedding discrepancy between the feature encoder of the teacher policy and the one of the student policy. Hence, this paper presents a privileged learning framework with multiple feature encoders and a residual policy network for robust and reliable quadruped locomotion subject to various external perturbations. The multi-encoder structure can decouple latent features from different privileged information, ultimately leading to enhanced performance of the learned policy in terms of robustness, stability, and reliability. The efficiency of the proposed feature encoding module is analyzed in depth using extensive simulation data. The introduction of the residual policy network helps mitigate the performance degradation experienced by the student policy that attempts to clone the behaviors of a teacher policy. The proposed framework is evaluated on a Unitree GO1 robot, showcasing its performance enhancement over the state-of-the-art privileged learning algorithm through extensive experiments conducted on diverse terrains. Ablation studies are conducted to illustrate the efficiency of the residual policy network.
Abstract:The model editing problem concerns how language models should learn new facts about the world over time. While empirical research on model editing has drawn widespread attention, the conceptual foundations of model editing remain shaky -- perhaps unsurprisingly, since model editing is essentially belief revision, a storied problem in philosophy that has eluded succinct solutions for decades. Model editing nonetheless demands a solution, since we need to be able to control the knowledge within language models. With this goal in mind, this paper critiques the standard formulation of the model editing problem and proposes a formal testbed for model editing research. We first describe 12 open problems with model editing, based on challenges with (1) defining the problem, (2) developing benchmarks, and (3) assuming LLMs have editable beliefs in the first place. Many of these challenges are extremely difficult to address, e.g. determining far-reaching consequences of edits, labeling probabilistic entailments between facts, and updating beliefs of agent simulators. Next, we introduce a semi-synthetic dataset for model editing based on Wikidata, where we can evaluate edits against labels given by an idealized Bayesian agent. This enables us to say exactly how belief revision in language models falls short of a desirable epistemic standard. We encourage further research exploring settings where such a gold standard can be compared against. Our code is publicly available at: https://github.com/peterbhase/LLM-belief-revision
Abstract:Sampling invariant distributions from an Ito diffusion process presents a significant challenge in stochastic simulation. Traditional numerical solvers for stochastic differential equations require both a fine step size and a lengthy simulation period, resulting in both biased and correlated samples. Current deep learning-based method solves the stationary Fokker--Planck equation to determine the invariant probability density function in form of deep neural networks, but they generally do not directly address the problem of sampling from the computed density function. In this work, we introduce a framework that employs a weak generative sampler (WGS) to directly generate independent and identically distributed (iid) samples induced by a transformation map derived from the stationary Fokker--Planck equation. Our proposed loss function is based on the weak form of the Fokker--Planck equation, integrating normalizing flows to characterize the invariant distribution and facilitate sample generation from the base distribution. Our randomized test function circumvents the need for mini-max optimization in the traditional weak formulation. Distinct from conventional generative models, our method neither necessitates the computationally intensive calculation of the Jacobian determinant nor the invertibility of the transformation map. A crucial component of our framework is the adaptively chosen family of test functions in the form of Gaussian kernel functions with centres selected from the generated data samples. Experimental results on several benchmark examples demonstrate the effectiveness of our method, which offers both low computational costs and excellent capability in exploring multiple metastable states.
Abstract:Confusing charge prediction is a challenging task in legal AI, which involves predicting confusing charges based on fact descriptions. While existing charge prediction methods have shown impressive performance, they face significant challenges when dealing with confusing charges, such as Snatch and Robbery. In the legal domain, constituent elements play a pivotal role in distinguishing confusing charges. Constituent elements are fundamental behaviors underlying criminal punishment and have subtle distinctions among charges. In this paper, we introduce a novel From Graph to Word Bag (FWGB) approach, which introduces domain knowledge regarding constituent elements to guide the model in making judgments on confusing charges, much like a judge's reasoning process. Specifically, we first construct a legal knowledge graph containing constituent elements to help select keywords for each charge, forming a word bag. Subsequently, to guide the model's attention towards the differentiating information for each charge within the context, we expand the attention mechanism and introduce a new loss function with attention supervision through words in the word bag. We construct the confusing charges dataset from real-world judicial documents. Experiments demonstrate the effectiveness of our method, especially in maintaining exceptional performance in imbalanced label distributions.
Abstract:Transformers generalize to novel compositions of structures and entities after being trained on a complex dataset, but easily overfit on datasets of insufficient complexity. We observe that when the training set is sufficiently complex, the model encodes sentences that have a common syntactic structure using a systematic attention pattern. Inspired by this observation, we propose SQ-Transformer (Structurally Quantized) that explicitly encourages systematicity in the embeddings and attention layers, even with a training set of low complexity. At the embedding level, we introduce Structure-oriented Vector Quantization (SoVQ) to cluster word embeddings into several classes of structurally equivalent entities. At the attention level, we devise the Systematic Attention Layer (SAL) and an alternative, Systematically Regularized Layer (SRL) that operate on the quantized word embeddings so that sentences of the same structure are encoded with invariant or similar attention patterns. Empirically, we show that SQ-Transformer achieves stronger compositional generalization than the vanilla Transformer on multiple low-complexity semantic parsing and machine translation datasets. In our analysis, we show that SoVQ indeed learns a syntactically clustered embedding space and SAL/SRL induces generalizable attention patterns, which lead to improved systematicity.
Abstract:Recent diagnostic datasets on compositional generalization, such as SCAN (Lake and Baroni, 2018) and COGS (Kim and Linzen, 2020), expose severe problems in models trained from scratch on these datasets. However, in contrast to this poor performance, state-of-the-art models trained on larger and more general datasets show better generalization ability. In this work, to reconcile this inconsistency, we conduct an empirical analysis by training Transformer models on a variety of training sets with different data factors, including dataset scale, pattern complexity, example difficulty, etc. First, we show that increased dataset complexity can lead to better generalization behavior on multiple different generalization challenges. To further understand this improvement, we show two axes of the benefit from more complex datasets: they provide more diverse examples so compositional understanding becomes more effective, and they also prevent ungeneralizable memorization of the examples due to reduced example repetition frequency. Finally, we explore how training examples of different difficulty levels influence generalization differently. On synthetic datasets, simple examples invoke stronger compositionality than hard examples do. On larger-scale real language datasets, while hard examples become more important potentially to ensure decent data coverage, a balanced mixture of simple and hard examples manages to induce the strongest generalizability. The code and data for this work are available at https://github.com/owenzx/data4comp
Abstract:We address the problem of photorealistic 3D face avatar synthesis from sparse images. Existing Parametric models for face avatar reconstruction struggle to generate details that originate from inputs. Meanwhile, although current NeRF-based avatar methods provide promising results for novel view synthesis, they fail to generalize well for unseen expressions. We improve from NeRF and propose a novel framework that, by leveraging the parametric 3DMM models, can reconstruct a high-fidelity drivable face avatar and successfully handle the unseen expressions. At the core of our implementation are structured displacement feature and semantic-aware learning module. Our structured displacement feature will introduce the motion prior as an additional constraints and help perform better for unseen expressions, by constructing displacement volume. Besides, the semantic-aware learning incorporates multi-level prior, e.g., semantic embedding, learnable latent code, to lift the performance to a higher level. Thorough experiments have been doen both quantitatively and qualitatively to demonstrate the design of our framework, and our method achieves much better results than the current state-of-the-arts.
Abstract:The diffusion model has shown remarkable success in computer vision, but it remains unclear whether ODE-based probability flow or SDE-based diffusion models are superior and under what circumstances. Comparing the two is challenging due to dependencies on data distribution, score training, and other numerical factors. In this paper, we examine the problem mathematically by examining two limiting scenarios: the ODE case and the large diffusion case. We first introduce a pulse-shape error to perturb the score function and analyze error accumulation, with a generalization to arbitrary error. Our findings indicate that when the perturbation occurs at the end of the generative process, the ODE model outperforms the SDE model (with a large diffusion coefficient). However, when the perturbation occurs earlier, the SDE model outperforms the ODE model, and we demonstrate that the error of sample generation due to pulse-shape error can be exponentially suppressed as the diffusion term's magnitude increases to infinity. Numerical validation of this phenomenon is provided using toy models such as Gaussian, Gaussian mixture models, and Swiss roll. Finally, we experiment with MNIST and observe that varying the diffusion coefficient can improve sample quality even when the score function is not well trained.
Abstract:Estimating human pose from video is a task that receives considerable attention due to its applicability in numerous 3D fields. The complexity of prior knowledge of human body movements poses a challenge to neural network models in the task of regressing keypoints. In this paper, we address this problem by incorporating motion prior in an adversarial way. Different from previous methods, we propose to decompose holistic motion prior to joint motion prior, making it easier for neural networks to learn from prior knowledge thereby boosting the performance on the task. We also utilize a novel regularization loss to balance accuracy and smoothness introduced by motion prior. Our method achieves 9\% lower PA-MPJPE and 29\% lower acceleration error than previous methods tested on 3DPW. The estimator proves its robustness by achieving impressive performance on in-the-wild dataset.
Abstract:Universal Information Extraction (UIE) is an area of interest due to the challenges posed by varying targets, heterogeneous structures, and demand-specific schemas. However, previous works have only achieved limited success by unifying a few tasks, such as Named Entity Recognition (NER) and Relation Extraction (RE), which fall short of being authentic UIE models particularly when extracting other general schemas such as quadruples and quintuples. Additionally, these models used an implicit structural schema instructor, which could lead to incorrect links between types, hindering the model's generalization and performance in low-resource scenarios. In this paper, we redefine the authentic UIE with a formal formulation that encompasses almost all extraction schemas. To the best of our knowledge, we are the first to introduce UIE for any kind of schemas. In addition, we propose RexUIE, which is a Recursive Method with Explicit Schema Instructor for UIE. To avoid interference between different types, we reset the position ids and attention mask matrices. RexUIE shows strong performance under both full-shot and few-shot settings and achieves State-of-the-Art results on the tasks of extracting complex schemas.