Abstract:This study proposes a 3D semantic segmentation method for the spine based on the improved SwinUNETR to improve segmentation accuracy and robustness. Aiming at the complex anatomical structure of spinal images, this paper introduces a multi-scale fusion mechanism to enhance the feature extraction capability by using information of different scales, thereby improving the recognition accuracy of the model for the target area. In addition, the introduction of the adaptive attention mechanism enables the model to dynamically adjust the attention to the key area, thereby optimizing the boundary segmentation effect. The experimental results show that compared with 3D CNN, 3D U-Net, and 3D U-Net + Transformer, the model of this study has achieved significant improvements in mIoU, mDice, and mAcc indicators, and has better segmentation performance. The ablation experiment further verifies the effectiveness of the proposed improved method, proving that multi-scale fusion and adaptive attention mechanism have a positive effect on the segmentation task. Through the visualization analysis of the inference results, the model can better restore the real anatomical structure of the spinal image. Future research can further optimize the Transformer structure and expand the data scale to improve the generalization ability of the model. This study provides an efficient solution for the task of medical image segmentation, which is of great significance to intelligent medical image analysis.
Abstract:This study proposed a hybrid model of a convolutional neural network (CNN) and a Transformer to predict and diagnose heart disease. Based on CNN's strength in detecting local features and the Transformer's high capacity in sensing global relations, the model is able to successfully detect risk factors of heart disease from high-dimensional life history data. Experimental results show that the proposed model outperforms traditional benchmark models like support vector machine (SVM), convolutional neural network (CNN), and long short-term memory network (LSTM) on several measures like accuracy, precision, and recall. This demonstrates its strong ability to deal with multi-dimensional and unstructured data. In order to verify the effectiveness of the model, experiments removing certain parts were carried out, and the results of the experiments showed that it is important to use both CNN and Transformer modules in enhancing the model. This paper also discusses the incorporation of additional features and approaches in future studies to enhance the model's performance and enable it to operate effectively in diverse conditions. This study presents novel insights and methods for predicting heart disease using machine learning, with numerous potential applications especially in personalized medicine and health management.
Abstract:Deep learning has emerged as a transformative approach for solving complex pattern recognition and object detection challenges. This paper focuses on the application of a novel detection framework based on the RT-DETR model for analyzing intricate image data, particularly in areas such as diabetic retinopathy detection. Diabetic retinopathy, a leading cause of vision loss globally, requires accurate and efficient image analysis to identify early-stage lesions. The proposed RT-DETR model, built on a Transformer-based architecture, excels at processing high-dimensional and complex visual data with enhanced robustness and accuracy. Comparative evaluations with models such as YOLOv5, YOLOv8, SSD, and DETR demonstrate that RT-DETR achieves superior performance across precision, recall, mAP50, and mAP50-95 metrics, particularly in detecting small-scale objects and densely packed targets. This study underscores the potential of Transformer-based models like RT-DETR for advancing object detection tasks, offering promising applications in medical imaging and beyond.
Abstract:Uplift modeling is essential for optimizing marketing strategies by selecting individuals likely to respond positively to specific marketing campaigns. This importance escalates in multi-treatment marketing campaigns, where diverse treatment is available and we may want to assign the customers to treatment that can make the most impact. While there are existing approaches with convenient frameworks like Causalml, there are potential spaces to enhance the effect of uplift modeling in multi treatment cases. This paper introduces a novel approach to uplift modeling in multi-treatment campaigns, leveraging score ranking and calibration techniques to improve overall performance of the marketing campaign. We review existing uplift models, including Meta Learner frameworks (S, T, X), and their application in real-world scenarios. Additionally, we delve into insights from multi-treatment studies to highlight the complexities and potential advancements in the field. Our methodology incorporates Meta-Learner calibration and a scoring rank-based offer selection strategy. Extensive experiment results with real-world datasets demonstrate the practical benefits and superior performance of our approach. The findings underscore the critical role of integrating score ranking and calibration techniques in refining the performance and reliability of uplift predictions, thereby advancing predictive modeling in marketing analytics and providing actionable insights for practitioners seeking to optimize their campaign strategies.
Abstract:This project intends to study a cardiovascular disease risk early warning model based on one-dimensional convolutional neural networks. First, the missing values of 13 physiological and symptom indicators such as patient age, blood glucose, cholesterol, and chest pain were filled and Z-score was standardized. The convolutional neural network is converted into a 2D matrix, the convolution function of 1,3, and 5 is used for the first-order convolution operation, and the Max Pooling algorithm is adopted for dimension reduction. Set the learning rate and output rate. It is optimized by the Adam algorithm. The result of classification is output by a soft classifier. This study was conducted based on Statlog in the UCI database and heart disease database respectively. The empirical data indicate that the forecasting precision of this technique has been enhanced by 11.2%, relative to conventional approaches, while there is a significant improvement in the logarithmic curve fitting. The efficacy and applicability of the novel approach are corroborated through the examination employing a one-dimensional convolutional neural network.
Abstract:Deep neural networks (DNNs) have revolutionized various industries, leading to the rise of Machine Learning as a Service (MLaaS). In this paradigm, well-trained models are typically deployed through APIs. However, DNNs are susceptible to backdoor attacks, which pose significant risks to their applications. This vulnerability necessitates a method for users to ascertain whether an API is compromised before usage. Although many backdoor detection methods have been developed, they often operate under the assumption that the defender has access to specific information such as details of the attack, soft predictions from the model API, and even the knowledge of the model parameters, limiting their practicality in MLaaS scenarios. To address it, in this paper, we begin by presenting an intriguing observation: the decision boundary of the backdoored model exhibits a greater degree of closeness than that of the clean model. Simultaneously, if only one single label is infected, a larger portion of the regions will be dominated by the attacked label. Building upon this observation, we propose Model X-ray, a novel backdoor detection approach for MLaaS through the analysis of decision boundaries. Model X-ray can not only identify whether the target API is infected by backdoor attacks but also determine the target attacked label under the all-to-one attack strategy. Importantly, it accomplishes this solely by the hard prediction of clean inputs, regardless of any assumptions about attacks and prior knowledge of the training details of the model. Extensive experiments demonstrated that Model X-ray can be effective for MLaaS across diverse backdoor attacks, datasets, and architectures.
Abstract:As the realm of spectral imaging applications extends its reach into the domains of mobile technology and augmented reality, the demands for compact yet high-fidelity systems become increasingly pronounced. Conventional methodologies, exemplified by coded aperture snapshot spectral imaging systems, are significantly limited by their cumbersome physical dimensions and form factors. To address this inherent challenge, diffractive optical elements (DOEs) have been repeatedly employed as a means to mitigate issues related to the bulky nature of these systems. Nonetheless, it's essential to note that the capabilities of DOEs primarily revolve around the modulation of the phase of light. Here, we introduce an end-to-end computational spectral imaging framework based on a polarization-multiplexed metalens. A distinguishing feature of this approach lies in its capacity to simultaneously modulate orthogonal polarization channels. When harnessed in conjunction with a neural network, it facilitates the attainment of high-fidelity spectral reconstruction. Importantly, the framework is intrinsically fully differentiable, a feature that permits the joint optimization of both the metalens structure and the parameters governing the neural network. The experimental results presented herein validate the exceptional spatial-spectral reconstruction performance, underscoring the efficacy of this system in practical, real-world scenarios. This innovative approach transcends the traditional boundaries separating hardware and software in the realm of computational imaging and holds the promise of substantially propelling the miniaturization of spectral imaging systems.
Abstract:Aspect Sentiment Triplet Extraction (ASTE) has achieved promising results while relying on sufficient annotation data in a specific domain. However, it is infeasible to annotate data for each individual domain. We propose to explore ASTE in the cross-domain setting, which transfers knowledge from a resource-rich source domain to a resource-poor target domain, thereby alleviating the reliance on labeled data in the target domain. To effectively transfer the knowledge across domains and extract the sentiment triplets accurately, we propose a method named Fine-grained cOntrAstive Learning (FOAL) to reduce the domain discrepancy and preserve the discriminability of each category. Experiments on six transfer pairs show that FOAL achieves 6% performance gains and reduces the domain discrepancy significantly compared with strong baselines. Our code will be publicly available once accepted.
Abstract:Compared with conventional grating-based spectrometers, reconstructive spectrometers based on spectrally engineered filtering have the advantage of miniaturization because of the less demand for dispersive optics and free propagation space. However, available reconstructive spectrometers fail to balance the performance on operational bandwidth, spectral diversity and angular stability. In this work, we proposed a compact silicon metasurfaces based spectrometer/camera. After angle integration, the spectral response of the system is robust to angle/aperture within a wide working bandwidth from 400nm to 800nm. It is experimentally demonstrated that the proposed method could maintain the spectral consistency from F/1.8 to F/4 (The corresponding angle of incident light ranges from 7{\deg} to 16{\deg}) and the incident hyperspectral signal could be accurately reconstructed with a fidelity exceeding 99%. Additionally, a spectral imaging system with 400x400 pixels is also established in this work. The accurate reconstructed hyperspectral image indicates that the proposed aperture-robust spectrometer has the potential to be extended as a high-resolution broadband hyperspectral camera.
Abstract:Aspect Sentiment Triplet Extraction (ASTE) is widely used in various applications. However, existing ASTE datasets are limited in their ability to represent real-world scenarios, hindering the advancement of research in this area. In this paper, we introduce a new dataset, named DMASTE, which is manually annotated to better fit real-world scenarios by providing more diverse and realistic reviews for the task. The dataset includes various lengths, diverse expressions, more aspect types, and more domains than existing datasets. We conduct extensive experiments on DMASTE in multiple settings to evaluate previous ASTE approaches. Empirical results demonstrate that DMASTE is a more challenging ASTE dataset. Further analyses of in-domain and cross-domain settings provide promising directions for future research. Our code and dataset are available at https://github.com/NJUNLP/DMASTE.