Abstract:This project intends to study a cardiovascular disease risk early warning model based on one-dimensional convolutional neural networks. First, the missing values of 13 physiological and symptom indicators such as patient age, blood glucose, cholesterol, and chest pain were filled and Z-score was standardized. The convolutional neural network is converted into a 2D matrix, the convolution function of 1,3, and 5 is used for the first-order convolution operation, and the Max Pooling algorithm is adopted for dimension reduction. Set the learning rate and output rate. It is optimized by the Adam algorithm. The result of classification is output by a soft classifier. This study was conducted based on Statlog in the UCI database and heart disease database respectively. The empirical data indicate that the forecasting precision of this technique has been enhanced by 11.2%, relative to conventional approaches, while there is a significant improvement in the logarithmic curve fitting. The efficacy and applicability of the novel approach are corroborated through the examination employing a one-dimensional convolutional neural network.
Abstract:Aiming at the limitations of traditional medical decision system in processing large-scale heterogeneous medical data and realizing highly personalized recommendation, this paper introduces a personalized medical decision algorithm utilizing graph neural network (GNN). This research innovatively integrates graph neural network technology into the medical and health field, aiming to build a high-precision representation model of patient health status by mining the complex association between patients' clinical characteristics, genetic information, living habits. In this study, medical data is preprocessed to transform it into a graph structure, where nodes represent different data entities (such as patients, diseases, genes, etc.) and edges represent interactions or relationships between entities. The core of the algorithm is to design a novel multi-scale fusion mechanism, combining the historical medical records, physiological indicators and genetic characteristics of patients, to dynamically adjust the attention allocation strategy of the graph neural network, so as to achieve highly customized analysis of individual cases. In the experimental part, this study selected several publicly available medical data sets for validation, and the results showed that compared with traditional machine learning methods and a single graph neural network model, the proposed personalized medical decision algorithm showed significantly superior performance in terms of disease prediction accuracy, treatment effect evaluation and patient risk stratification.
Abstract:This paper combines Struts and Hibernate two architectures together, using DAO (Data Access Object) to store and access data. Then a set of dual-mode humidity medical image library suitable for deep network is established, and a dual-mode medical image assisted diagnosis method based on the image is proposed. Through the test of various feature extraction methods, the optimal operating characteristic under curve product (AUROC) is 0.9985, the recall rate is 0.9814, and the accuracy is 0.9833. This method can be applied to clinical diagnosis, and it is a practical method. Any outpatient doctor can register quickly through the system, or log in to the platform to upload the image to obtain more accurate images. Through the system, each outpatient physician can quickly register or log in to the platform for image uploading, thus obtaining more accurate images. The segmentation of images can guide doctors in clinical departments. Then the image is analyzed to determine the location and nature of the tumor, so as to make targeted treatment.