Decentralized finance applications depend on accurate price oracles to ensure secure transactions, yet these oracles are highly vulnerable to manipulation, enabling attackers to exploit smart contract vulnerabilities for unfair asset valuation and financial gain. Detecting such manipulations traditionally relies on the manual effort of experienced experts, presenting significant challenges. In this paper, we propose a novel LLM-driven framework that automates the detection of price oracle manipulations by leveraging the complementary strengths of different LLM models. Our approach begins with domain-specific knowledge extraction, where an LLM model synthesizes precise insights about price oracle vulnerabilities from top-tier academic papers, eliminating the need for profound expertise from developers or auditors. This knowledge forms the foundation for a second LLM model to generate structured, context-aware chain of thought prompts, which guide a third LLM model in accurately identifying manipulation patterns in smart contracts. We validate the framework effectiveness through experiments on 60 known vulnerabilities from 46 real-world DeFi attacks or projects spanning 2021 to 2023. The best performing combination of LLMs (Haiku-Haiku-4o-mini) identified by AiRacleX demonstrate a 2.58-times improvement in recall (0.667 vs 0.259) compared to the state-of-the-art tool GPTScan, while maintaining comparable precision. Furthermore, our framework demonstrates the feasibility of replacing commercial models with open-source alternatives, enhancing privacy and security for developers.