Abstract:As we transition from Narrow Artificial Intelligence towards Artificial Super Intelligence, users are increasingly concerned about their privacy and the trustworthiness of machine learning (ML) technology. A common denominator for the metrics of trustworthiness is the quantification of uncertainty inherent in DL algorithms, and specifically in the model parameters, input data, and model predictions. One of the common approaches to address privacy-related issues in DL is to adopt distributed learning such as federated learning (FL), where private raw data is not shared among users. Despite the privacy-preserving mechanisms in FL, it still faces challenges in trustworthiness. Specifically, the malicious users, during training, can systematically create malicious model parameters to compromise the models predictive and generative capabilities, resulting in high uncertainty about their reliability. To demonstrate malicious behaviour, we propose a novel model poisoning attack method named Delphi which aims to maximise the uncertainty of the global model output. We achieve this by taking advantage of the relationship between the uncertainty and the model parameters of the first hidden layer of the local model. Delphi employs two types of optimisation , Bayesian Optimisation and Least Squares Trust Region, to search for the optimal poisoned model parameters, named as Delphi-BO and Delphi-LSTR. We quantify the uncertainty using the KL Divergence to minimise the distance of the predictive probability distribution towards an uncertain distribution of model output. Furthermore, we establish a mathematical proof for the attack effectiveness demonstrated in FL. Numerical results demonstrate that Delphi-BO induces a higher amount of uncertainty than Delphi-LSTR highlighting vulnerability of FL systems to model poisoning attacks.
Abstract:The integration of low earth orbit (LEO) satellites with terrestrial communication networks holds the promise of seamless global connectivity. The efficiency of this connection, however, depends on the availability of reliable channel state information (CSI). Due to the large space-ground propagation delays, the estimated CSI is outdated. In this paper we consider the downlink of a satellite operating as a base station in support of multiple mobile users. The estimated outdated CSI is used at the satellite side to design a transmit precoding (TPC) matrix for the downlink. We propose a deep reinforcement learning (DRL)-based approach to optimize the TPC matrices, with the goal of maximizing the achievable data rate. We utilize the deep deterministic policy gradient (DDPG) algorithm to handle the continuous action space, and we employ state augmentation techniques to deal with the delayed observations and rewards. We show that the DRL agent is capable of exploiting the time-domain correlations of the channels for constructing accurate TPC matrices. This is because the proposed method is capable of compensating for the effects of delayed CSI in different frequency bands. Furthermore, we study the effect of handovers in the system, and show that the DRL agent is capable of promptly adapting to the environment when a handover occurs.