Abstract:This work explores sequential model editing in large language models (LLMs), a critical task that involves modifying internal knowledge within LLMs continuously through multi-round editing, each incorporating updates or corrections to adjust the model outputs without the need for costly retraining. Existing model editing methods, especially those that alter model parameters, typically focus on single-round editing and often face significant challenges in sequential model editing-most notably issues of model forgetting and failure. To address these challenges, we introduce a new model editing method, namely \textbf{N}euron-level \textbf{S}equential \textbf{E}diting (NSE), tailored for supporting sequential model editing. Specifically, we optimize the target layer's hidden states using the model's original weights to prevent model failure. Furthermore, we iteratively select neurons in multiple layers for editing based on their activation values to mitigate model forgetting. Our empirical experiments demonstrate that NSE significantly outperforms current modifying parameters model editing methods, marking a substantial advancement in the field of sequential model editing. Our code is released on \url{https://github.com/jianghoucheng/NSE}.
Abstract:We present STAR, a text-to-image model that employs scale-wise auto-regressive paradigm. Unlike VAR, which is limited to class-conditioned synthesis within a fixed set of predetermined categories, our STAR enables text-driven open-set generation through three key designs: To boost diversity and generalizability with unseen combinations of objects and concepts, we introduce a pre-trained text encoder to extract representations for textual constraints, which we then use as guidance. To improve the interactions between generated images and fine-grained textual guidance, making results more controllable, additional cross-attention layers are incorporated at each scale. Given the natural structure correlation across different scales, we leverage 2D Rotary Positional Encoding (RoPE) and tweak it into a normalized version. This ensures consistent interpretation of relative positions across token maps at different scales and stabilizes the training process. Extensive experiments demonstrate that STAR surpasses existing benchmarks in terms of fidelity,image text consistency, and aesthetic quality. Our findings emphasize the potential of auto-regressive methods in the field of high-quality image synthesis, offering promising new directions for the T2I field currently dominated by diffusion methods.
Abstract:Multimodal sentiment analysis in videos is a key task in many real-world applications, which usually requires integrating multimodal streams including visual, verbal and acoustic behaviors. To improve the robustness of multimodal fusion, some of the existing methods let different modalities communicate with each other and modal the crossmodal interaction via transformers. However, these methods only use the single-scale representations during the interaction but forget to exploit multi-scale representations that contain different levels of semantic information. As a result, the representations learned by transformers could be biased especially for unaligned multimodal data. In this paper, we propose a multi-scale cooperative multimodal transformer (MCMulT) architecture for multimodal sentiment analysis. On the whole, the "multi-scale" mechanism is capable of exploiting the different levels of semantic information of each modality which are used for fine-grained crossmodal interactions. Meanwhile, each modality learns its feature hierarchies via integrating the crossmodal interactions from multiple level features of its source modality. In this way, each pair of modalities progressively builds feature hierarchies respectively in a cooperative manner. The empirical results illustrate that our MCMulT model not only outperforms existing approaches on unaligned multimodal sequences but also has strong performance on aligned multimodal sequences.
Abstract:Face reenactment is a challenging task, as it is difficult to maintain accurate expression, pose and identity simultaneously. Most existing methods directly apply driving facial landmarks to reenact source faces and ignore the intrinsic gap between two identities, resulting in the identity mismatch issue. Besides, they neglect the entanglement of expression and pose features when encoding driving faces, leading to inaccurate expressions and visual artifacts on large-pose reenacted faces. To address these problems, we propose a Large-pose Identity-preserving face reenactment network, LI-Net. Specifically, the Landmark Transformer is adopted to adjust driving landmark images, which aims to narrow the identity gap between driving and source landmark images. Then the Face Rotation Module and the Expression Enhancing Generator decouple the transformed landmark image into pose and expression features, and reenact those attributes separately to generate identity-preserving faces with accurate expressions and poses. Both qualitative and quantitative experimental results demonstrate the superiority of our method.
Abstract:Fine-grained aspect extraction is an essential sub-task in aspect based opinion analysis. It aims to identify the aspect terms (a.k.a. opinion targets) of a product or service in each sentence. However, expensive annotation process is usually involved to acquire sufficient token-level labels for each domain. To address this limitation, some previous works propose domain adaptation strategies to transfer knowledge from a sufficiently labeled source domain to unlabeled target domains. But due to both the difficulty of fine-grained prediction problems and the large domain gap between domains, the performance remains unsatisfactory. This work conducts a pioneer study on leveraging sentence-level aspect category labels that can be usually available in commercial services like review sites to promote token-level transfer for the extraction purpose. Specifically, the aspect category information is used to construct pivot knowledge for transfer with assumption that the interactions between sentence-level aspect category and token-level aspect terms are invariant across domains. To this end, we propose a novel multi-level reconstruction mechanism that aligns both the fine-grained and coarse-grained information in multiple levels of abstractions. Comprehensive experiments demonstrate that our approach can fully utilize sentence-level aspect category labels to improve cross-domain aspect extraction with a large performance gain.