Abstract:Single hyperspectral image super-resolution (single-HSI-SR) aims to improve the resolution of a single input low-resolution HSI. Due to the bottleneck of data scarcity, the development of single-HSI-SR lags far behind that of RGB natural images. In recent years, research on RGB SR has shown that models pre-trained on large-scale benchmark datasets can greatly improve performance on unseen data, which may stand as a remedy for HSI. But how can we transfer the pre-trained RGB model to HSI, to overcome the data-scarcity bottleneck? Because of the significant difference in the channels between the pre-trained RGB model and the HSI, the model cannot focus on the correlation along the spectral dimension, thus limiting its ability to utilize on HSI. Inspired by the HSI spatial-spectral decoupling, we propose a new framework that first fine-tunes the pre-trained model with the spatial components (known as eigenimages), and then infers on unseen HSI using an iterative spectral regularization (ISR) to maintain the spectral correlation. The advantages of our method lie in: 1) we effectively inject the spatial texture processing capabilities of the pre-trained RGB model into HSI while keeping spectral fidelity, 2) learning in the spectral-decorrelated domain can improve the generalizability to spectral-agnostic data, and 3) our inference in the eigenimage domain naturally exploits the spectral low-rank property of HSI, thereby reducing the complexity. This work bridges the gap between pre-trained RGB models and HSI via eigenimages, addressing the issue of limited HSI training data, hence the name EigenSR. Extensive experiments show that EigenSR outperforms the state-of-the-art (SOTA) methods in both spatial and spectral metrics. Our code will be released.
Abstract:Machine learning models are becoming pervasive in high-stakes applications. Despite their clear benefits in terms of performance, the models could show bias against minority groups and result in fairness issues in a decision-making process, leading to severe negative impacts on the individuals and the society. In recent years, various techniques have been developed to mitigate the bias for machine learning models. Among them, in-processing methods have drawn increasing attention from the community, where fairness is directly taken into consideration during model design to induce intrinsically fair models and fundamentally mitigate fairness issues in outputs and representations. In this survey, we review the current progress of in-processing bias mitigation techniques. Based on where the fairness is achieved in the model, we categorize them into explicit and implicit methods, where the former directly incorporates fairness metrics in training objectives, and the latter focuses on refining latent representation learning. Finally, we conclude the survey with a discussion of the research challenges in this community to motivate future exploration.
Abstract:High false-positive rate is a long-standing challenge for anomaly detection algorithms, especially in high-stake applications. To identify the true anomalies, in practice, analysts or domain experts will be employed to investigate the top instances one by one in a ranked list of anomalies identified by an anomaly detection system. This verification procedure generates informative labels that can be leveraged to re-rank the anomalies so as to help the analyst to discover more true anomalies given a time budget. Some re-ranking strategies have been proposed to approximate the above sequential decision process. Specifically, existing strategies have been focused on making the top instances more likely to be anomalous based on the feedback. Then they greedily select the top-1 instance for query. However, these greedy strategies could be sub-optimal since some low-ranked instances could be more helpful in the long-term. In this work, we propose Active Anomaly Detection with Meta-Policy (Meta-AAD), a novel framework that learns a meta-policy for query selection. Specifically, Meta-AAD leverages deep reinforcement learning to train the meta-policy to select the most proper instance to explicitly optimize the number of discovered anomalies throughout the querying process. Meta-AAD is easy to deploy since a trained meta-policy can be directly applied to any new datasets without further tuning. Extensive experiments on 24 benchmark datasets demonstrate that Meta-AAD significantly outperforms the state-of-the-art re-ranking strategies and the unsupervised baseline. The empirical analysis shows that the trained meta-policy is transferable and inherently achieves a balance between long-term and short-term rewards.