Abstract:Recently, Contrastive Language-Image Pre-training (CLIP) has shown promising performance in domain-specific data (e.g., biology), and has attracted increasing research attention. Existing works generally focus on collecting extensive domain-specific data and directly tuning the original CLIP models. Intuitively, such a paradigm takes no full consideration of the characteristics lying in domain-specific data (e.g., fine-grained nature of biological data) and so limits model capability, while mostly losing the original ability of CLIP in the general domain. In this paper, we propose a Distribution Alignment-based Language-Image Pre-Training (DALIP) method for biological data. Specifically, DALIP optimizes CLIP models by matching the similarity between feature distribution of image-text pairs instead of the original [cls] token, which can capture rich yet effective information inherent in image-text pairs as powerful representations, and so better cope with fine-grained nature of biological data. Particularly, our DALIP efficiently approximates feature distribution via its first- and second-order statistics, while presenting a Multi-head Brownian Distance Covariance (MBDC) module to acquire second-order statistics of token features efficiently. Furthermore, we collect a new dataset for plant domain (e.g., specific data in biological domain) comprising 10M plant data with 3M general-domain data (namely PlantMix-13M) according to data mixing laws. Extensive experiments show that DALIP clearly outperforms existing CLIP counterparts in biological domain, while well generalizing to remote sensing and medical imaging domains. Besides, our PlantMix-13M dataset further boosts performance of DALIP in plant domain, while preserving model ability in general domain.
Abstract:In recent years, the millimeter-wave radar to identify human behavior has been widely used in medical,security, and other fields. When multiple radars are performing detection tasks, the validity of the features contained in each radar is difficult to guarantee. In addition, processing multiple radar data also requires a lot of time and computational cost. The Complementary Ensemble Empirical Mode Decomposition-Energy Slice (CEEMD-ES) multistatic radar selection method is proposed to solve these problems. First, this method decomposes and reconstructs the radar signal according to the difference in the reflected echo frequency between the limbs and the trunk of the human body. Then, the radar is selected according to the difference between the ratio of echo energy of limbs and trunk and the theoretical value. The time domain, frequency domain and various entropy features of the selected radar are extracted. Finally, the Extreme Learning Machine (ELM) recognition model of the ReLu core is established. Experiments show that this method can effectively select the radar, and the recognition rate of three kinds of human actions is 98.53%.