Abstract:In this paper, we propose a new Robust Disentangled Counterfactual Learning (RDCL) approach for physical audiovisual commonsense reasoning. The task aims to infer objects' physics commonsense based on both video and audio input, with the main challenge being how to imitate the reasoning ability of humans, even under the scenario of missing modalities. Most of the current methods fail to take full advantage of different characteristics in multi-modal data, and lacking causal reasoning ability in models impedes the progress of implicit physical knowledge inferring. To address these issues, our proposed RDCL method decouples videos into static (time-invariant) and dynamic (time-varying) factors in the latent space by the disentangled sequential encoder, which adopts a variational autoencoder (VAE) to maximize the mutual information with a contrastive loss function. Furthermore, we introduce a counterfactual learning module to augment the model's reasoning ability by modeling physical knowledge relationships among different objects under counterfactual intervention. To alleviate the incomplete modality data issue, we introduce a robust multimodal learning method to recover the missing data by decomposing the shared features and model-specific features. Our proposed method is a plug-and-play module that can be incorporated into any baseline including VLMs. In experiments, we show that our proposed method improves the reasoning accuracy and robustness of baseline methods and achieves the state-of-the-art performance.
Abstract:In this paper, we propose a novel approach for solving the Visual Question Answering (VQA) task in autonomous driving by integrating Vision-Language Models (VLMs) with continual learning. In autonomous driving, VQA plays a vital role in enabling the system to understand and reason about its surroundings. However, traditional models often struggle with catastrophic forgetting when sequentially exposed to new driving tasks, such as perception, prediction, and planning, each requiring different forms of knowledge. To address this challenge, we present a novel continual learning framework that combines VLMs with selective memory replay and knowledge distillation, reinforced by task-specific projection layer regularization. The knowledge distillation allows a previously trained model to act as a "teacher" to guide the model through subsequent tasks, minimizing forgetting. Meanwhile, task-specific projection layers calculate the loss based on the divergence of feature representations, ensuring continuity in learning and reducing the shift between tasks. Evaluated on the DriveLM dataset, our framework shows substantial performance improvements, with gains ranging from 21.40% to 32.28% across various metrics. These results highlight the effectiveness of combining continual learning with VLMs in enhancing the resilience and reliability of VQA systems in autonomous driving. We will release our source code.
Abstract:Accurate prediction of future trajectories of traffic agents is essential for ensuring safe autonomous driving. However, partially observed trajectories can significantly degrade the performance of even state-of-the-art models. Previous approaches often rely on knowledge distillation to transfer features from fully observed trajectories to partially observed ones. This involves firstly training a fully observed model and then using a distillation process to create the final model. While effective, they require multi-stage training, making the training process very expensive. Moreover, knowledge distillation can lead to a performance degradation of the model. In this paper, we introduce a Target-driven Self-Distillation method (TSD) for motion forecasting. Our method leverages predicted accurate targets to guide the model in making predictions under partial observation conditions. By employing self-distillation, the model learns from the feature distributions of both fully observed and partially observed trajectories during a single end-to-end training process. This enhances the model's ability to predict motion accurately in both fully observed and partially observed scenarios. We evaluate our method on multiple datasets and state-of-the-art motion forecasting models. Extensive experimental results demonstrate that our approach achieves significant performance improvements in both settings. To facilitate further research, we will release our code and model checkpoints.
Abstract:Robustly predicting attention regions of interest for self-driving systems is crucial for driving safety but presents significant challenges due to the labor-intensive nature of obtaining large-scale attention labels and the domain gap between self-driving scenarios and natural scenes. These challenges are further exacerbated by complex traffic environments, including camera corruption under adverse weather, noise interferences, and central bias from long-tail distributions. To address these issues, we propose a robust unsupervised attention prediction method. An Uncertainty Mining Branch refines predictions by analyzing commonalities and differences across multiple pre-trained models on natural scenes, while a Knowledge Embedding Block bridges the domain gap by incorporating driving knowledge to adaptively enhance pseudo-labels. Additionally, we introduce RoboMixup, a novel data augmentation method that improves robustness against corruption through soft attention and dynamic augmentation, and mitigates central bias by integrating random cropping into Mixup as a regularizer.To systematically evaluate robustness in self-driving attention prediction, we introduce the DriverAttention-C benchmark, comprising over 100k frames across three subsets: BDD-A-C, DR(eye)VE-C, and DADA-2000-C. Our method achieves performance equivalent to or surpassing fully supervised state-of-the-art approaches on three public datasets and the proposed robustness benchmark, reducing relative corruption degradation by 58.8% and 52.8%, and improving central bias robustness by 12.4% and 11.4% in KLD and CC metrics, respectively. Code and data are available at https://github.com/zaplm/DriverAttention.
Abstract:Conventional 2D human pose estimation methods typically require extensive labeled annotations, which are both labor-intensive and expensive. In contrast, semi-supervised 2D human pose estimation can alleviate the above problems by leveraging a large amount of unlabeled data along with a small portion of labeled data. Existing semi-supervised 2D human pose estimation methods update the network through backpropagation, ignoring crucial historical information from the previous training process. Therefore, we propose a novel semi-supervised 2D human pose estimation method by utilizing a newly designed Teacher-Reviewer-Student framework. Specifically, we first mimic the phenomenon that human beings constantly review previous knowledge for consolidation to design our framework, in which the teacher predicts results to guide the student's learning and the reviewer stores important historical parameters to provide additional supervision signals. Secondly, we introduce a Multi-level Feature Learning strategy, which utilizes the outputs from different stages of the backbone to estimate the heatmap to guide network training, enriching the supervisory information while effectively capturing keypoint relationships. Finally, we design a data augmentation strategy, i.e., Keypoint-Mix, to perturb pose information by mixing different keypoints, thus enhancing the network's ability to discern keypoints. Extensive experiments on publicly available datasets, demonstrate our method achieves significant improvements compared to the existing methods.
Abstract:3D human pose estimation (3D HPE) has emerged as a prominent research topic, particularly in the realm of RGB-based methods. However, RGB images are susceptible to limitations such as sensitivity to lighting conditions and potential user discomfort. Consequently, multi-modal sensing, which leverages non-intrusive sensors, is gaining increasing attention. Nevertheless, multi-modal 3D HPE still faces challenges, including modality imbalance and the imperative for continual learning. In this work, we introduce a novel balanced continual multi-modal learning method for 3D HPE, which harnesses the power of RGB, LiDAR, mmWave, and WiFi. Specifically, we propose a Shapley value-based contribution algorithm to quantify the contribution of each modality and identify modality imbalance. To address this imbalance, we employ a re-learning strategy. Furthermore, recognizing that raw data is prone to noise contamination, we develop a novel denoising continual learning approach. This approach incorporates a noise identification and separation module to mitigate the adverse effects of noise and collaborates with the balanced learning strategy to enhance optimization. Additionally, an adaptive EWC mechanism is employed to alleviate catastrophic forgetting. We conduct extensive experiments on the widely-adopted multi-modal dataset, MM-Fi, which demonstrate the superiority of our approach in boosting 3D pose estimation and mitigating catastrophic forgetting in complex scenarios. We will release our codes.
Abstract:Generating realistic human grasps is crucial yet challenging for object manipulation in computer graphics and robotics. Current methods often struggle to generate detailed and realistic grasps with full finger-object interaction, as they typically rely on encoding the entire hand and estimating both posture and position in a single step. Additionally, simulating object deformation during grasp generation is still difficult, as modeling such deformation requires capturing the comprehensive relationship among points of the object's surface. To address these limitations, we propose a novel improved Decomposed Vector-Quantized Variational Autoencoder (DVQ-VAE-2), which decomposes the hand into distinct parts and encodes them separately. This part-aware architecture allows for more precise management of hand-object interactions. Furthermore, we introduce a dual-stage decoding strategy that first predicts the grasp type under skeletal constraints and then identifies the optimal grasp position, enhancing both the realism and adaptability of the model to unseen interactions. Furthermore, we introduce a new Mesh UFormer as the backbone network to extract the hierarchical structural representations from the mesh and propose a new normal vector-guided position encoding to simulate the hand-object deformation. In experiments, our model achieves a relative improvement of approximately 14.1% in grasp quality compared to state-of-the-art methods across four widely used benchmarks. Our comparisons with other backbone networks show relative improvements of 2.23% in Hand-object Contact Distance and 5.86% in Quality Index on deformable and rigid object based datasets, respectively. Our source code and model are available at https://github.com/florasion/D-VQVAE.
Abstract:Action Quality Assessment (AQA), which aims at automatic and fair evaluation of athletic performance, has gained increasing attention in recent years. However, athletes are often in rapid movement and the corresponding visual appearance variances are subtle, making it challenging to capture fine-grained pose differences and leading to poor estimation performance. Furthermore, most common AQA tasks, such as diving in sports, are usually divided into multiple sub-actions, each of which contains different durations. However, existing methods focus on segmenting the video into fixed frames, which disrupts the temporal continuity of sub-actions resulting in unavoidable prediction errors. To address these challenges, we propose a novel action quality assessment method through hierarchically pose-guided multi-stage contrastive regression. Firstly, we introduce a multi-scale dynamic visual-skeleton encoder to capture fine-grained spatio-temporal visual and skeletal features. Then, a procedure segmentation network is introduced to separate different sub-actions and obtain segmented features. Afterwards, the segmented visual and skeletal features are both fed into a multi-modal fusion module as physics structural priors, to guide the model in learning refined activity similarities and variances. Finally, a multi-stage contrastive learning regression approach is employed to learn discriminative representations and output prediction results. In addition, we introduce a newly-annotated FineDiving-Pose Dataset to improve the current low-quality human pose labels. In experiments, the results on FineDiving and MTL-AQA datasets demonstrate the effectiveness and superiority of our proposed approach. Our source code and dataset are available at https://github.com/Lumos0507/HP-MCoRe.
Abstract:Effective modeling of group interactions and dynamic semantic intentions is crucial for forecasting behaviors like trajectories or movements. In complex scenarios like sports, agents' trajectories are influenced by group interactions and intentions, including team strategies and opponent actions. To this end, we propose a novel diffusion-based trajectory prediction framework that integrates group-level interactions into a conditional diffusion model, enabling the generation of diverse trajectories aligned with specific group activity. To capture dynamic semantic intentions, we frame group interaction prediction as a cooperative game, using Banzhaf interaction to model cooperation trends. We then fuse semantic intentions with enhanced agent embeddings, which are refined through both global and local aggregation. Furthermore, we expand the NBA SportVU dataset by adding human annotations of team-level tactics for trajectory and tactic prediction tasks. Extensive experiments on three widely-adopted datasets demonstrate that our model outperforms state-of-the-art methods. Our source code and data are available at https://github.com/aurora-xin/Group2Int-trajectory.
Abstract:Understanding the traffic scenes and then generating high-definition (HD) maps present significant challenges in autonomous driving. In this paper, we defined a novel Traffic Topology Scene Graph, a unified scene graph explicitly modeling the lane, controlled and guided by different road signals (e.g., right turn), and topology relationships among them, which is always ignored by previous high-definition (HD) mapping methods. For the generation of T2SG, we propose TopoFormer, a novel one-stage Topology Scene Graph TransFormer with two newly designed layers. Specifically, TopoFormer incorporates a Lane Aggregation Layer (LAL) that leverages the geometric distance among the centerline of lanes to guide the aggregation of global information. Furthermore, we proposed a Counterfactual Intervention Layer (CIL) to model the reasonable road structure ( e.g., intersection, straight) among lanes under counterfactual intervention. Then the generated T2SG can provide a more accurate and explainable description of the topological structure in traffic scenes. Experimental results demonstrate that TopoFormer outperforms existing methods on the T2SG generation task, and the generated T2SG significantly enhances traffic topology reasoning in downstream tasks, achieving a state-of-the-art performance of 46.3 OLS on the OpenLane-V2 benchmark. We will release our source code and model.