Abstract:Understanding the traffic scenes and then generating high-definition (HD) maps present significant challenges in autonomous driving. In this paper, we defined a novel Traffic Topology Scene Graph, a unified scene graph explicitly modeling the lane, controlled and guided by different road signals (e.g., right turn), and topology relationships among them, which is always ignored by previous high-definition (HD) mapping methods. For the generation of T2SG, we propose TopoFormer, a novel one-stage Topology Scene Graph TransFormer with two newly designed layers. Specifically, TopoFormer incorporates a Lane Aggregation Layer (LAL) that leverages the geometric distance among the centerline of lanes to guide the aggregation of global information. Furthermore, we proposed a Counterfactual Intervention Layer (CIL) to model the reasonable road structure ( e.g., intersection, straight) among lanes under counterfactual intervention. Then the generated T2SG can provide a more accurate and explainable description of the topological structure in traffic scenes. Experimental results demonstrate that TopoFormer outperforms existing methods on the T2SG generation task, and the generated T2SG significantly enhances traffic topology reasoning in downstream tasks, achieving a state-of-the-art performance of 46.3 OLS on the OpenLane-V2 benchmark. We will release our source code and model.
Abstract:In current open real-world autonomous driving scenarios, challenges such as sensor failure and extreme weather conditions hinder the generalization of most autonomous driving perception models to these unseen domain due to the domain shifts between the test and training data. As the parameter scale of autonomous driving perception models grows, traditional test-time adaptation (TTA) methods become unstable and often degrade model performance in most scenarios. To address these challenges, this paper proposes two new robust methods to improve the Batch Normalization with TTA for object detection in autonomous driving: (1) We introduce a LearnableBN layer based on Generalized-search Entropy Minimization (GSEM) method. Specifically, we modify the traditional BN layer by incorporating auxiliary learnable parameters, which enables the BN layer to dynamically update the statistics according to the different input data. (2) We propose a new semantic-consistency based dual-stage-adaptation strategy, which encourages the model to iteratively search for the optimal solution and eliminates unstable samples during the adaptation process. Extensive experiments on the NuScenes-C dataset shows that our method achieves a maximum improvement of about 8% using BEVFormer as the baseline model across six corruption types and three levels of severity. We will make our source code available soon.
Abstract:Time series data mining is immensely important in extensive applications, such as traffic, medical, and e-commerce. In this paper, we focus on medical temporal variation modeling, \emph{i.e.,} cuffless blood pressure (BP) monitoring which has great value in cardiovascular healthcare. Although providing a comfortable user experience, such methods are suffering from the demand for a significant amount of realistic data to train an individual model for each subject, especially considering the invasive or obtrusive BP ground-truth measurements. To tackle this challenge, we introduce a novel physics-informed temporal network~(PITN) with adversarial contrastive learning to enable precise BP estimation with very limited data. Specifically, we first enhance the physics-informed neural network~(PINN) with the temporal block for investigating BP dynamics' multi-periodicity for personal cardiovascular cycle modeling and temporal variation. We then employ adversarial training to generate extra physiological time series data, improving PITN's robustness in the face of sparse subject-specific training data. Furthermore, we utilize contrastive learning to capture the discriminative variations of cardiovascular physiologic phenomena. This approach aggregates physiological signals with similar blood pressure values in latent space while separating clusters of samples with dissimilar blood pressure values. Experiments on three widely-adopted datasets with different modailties (\emph{i.e.,} bioimpedance, PPG, millimeter-wave) demonstrate the superiority and effectiveness of the proposed methods over previous state-of-the-art approaches. The code is available at~\url{https://github.com/Zest86/ACL-PITN}.
Abstract:Existing action quality assessment (AQA) methods often require a large number of label annotations for fully supervised learning, which are laborious and expensive. In practice, the labeled data are difficult to obtain because the AQA annotation process requires domain-specific expertise. In this paper, we propose a novel semi-supervised method, which can be utilized for better assessment of the AQA task by exploiting a large amount of unlabeled data and a small portion of labeled data. Differing from the traditional teacher-student network, we propose a teacher-reference-student architecture to learn both unlabeled and labeled data, where the teacher network and the reference network are used to generate pseudo-labels for unlabeled data to supervise the student network. Specifically, the teacher predicts pseudo-labels by capturing high-level features of unlabeled data. The reference network provides adequate supervision of the student network by referring to additional action information. Moreover, we introduce confidence memory to improve the reliability of pseudo-labels by storing the most accurate ever output of the teacher network and reference network. To validate our method, we conduct extensive experiments on three AQA benchmark datasets. Experimental results show that our method achieves significant improvements and outperforms existing semi-supervised AQA methods.
Abstract:Generating realistic human grasps is a crucial yet challenging task for applications involving object manipulation in computer graphics and robotics. Existing methods often struggle with generating fine-grained realistic human grasps that ensure all fingers effectively interact with objects, as they focus on encoding hand with the whole representation and then estimating both hand posture and position in a single step. In this paper, we propose a novel Decomposed Vector-Quantized Variational Autoencoder (DVQ-VAE) to address this limitation by decomposing hand into several distinct parts and encoding them separately. This part-aware decomposed architecture facilitates more precise management of the interaction between each component of hand and object, enhancing the overall reality of generated human grasps. Furthermore, we design a newly dual-stage decoding strategy, by first determining the type of grasping under skeletal physical constraints, and then identifying the location of the grasp, which can greatly improve the verisimilitude as well as adaptability of the model to unseen hand-object interaction. In experiments, our model achieved about 14.1% relative improvement in the quality index compared to the state-of-the-art methods in four widely-adopted benchmarks. Our source code is available at https://github.com/florasion/D-VQVAE.
Abstract:The successful application of semantic segmentation technology in the real world has been among the most exciting achievements in the computer vision community over the past decade. Although the long-tailed phenomenon has been investigated in many fields, e.g., classification and object detection, it has not received enough attention in semantic segmentation and has become a non-negligible obstacle to applying semantic segmentation technology in autonomous driving and virtual reality. Therefore, in this work, we focus on a relatively under-explored task setting, long-tailed semantic segmentation (LTSS). We first establish three representative datasets from different aspects, i.e., scene, object, and human. We further propose a dual-metric evaluation system and construct the LTSS benchmark to demonstrate the performance of semantic segmentation methods and long-tailed solutions. We also propose a transformer-based algorithm to improve LTSS, frequency-based matcher, which solves the oversuppression problem by one-to-many matching and automatically determines the number of matching queries for each class. Given the comprehensiveness of this work and the importance of the issues revealed, this work aims to promote the empirical study of semantic segmentation tasks. Our datasets, codes, and models will be publicly available.
Abstract:Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across various user postures (e.g., standing, sitting), positions, and scenes. To remedy this, we resort to designing a software pipeline that exploits wealthy 2D videos to generate realistic radar data, but it needs to address the challenge of simulating diversified and fine-grained reflection properties of user gestures. To this end, we design G3R with three key components: (i) a gesture reflection point generator expands the arm's skeleton points to form human reflection points; (ii) a signal simulation model simulates the multipath reflection and attenuation of radar signals to output the human intensity map; (iii) an encoder-decoder model combines a sampling module and a fitting module to address the differences in number and distribution of points between generated and real-world radar data for generating realistic radar data. We implement and evaluate G3R using 2D videos from public data sources and self-collected real-world radar data, demonstrating its superiority over other state-of-the-art approaches for gesture recognition.
Abstract:This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i.e., Kuaishou/Kwai Platform. The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing. The purpose is to build new benchmarks and advance the development of S-UGC VQA. The competition had 200 participants and 13 teams submitted valid solutions for the final testing phase. The proposed solutions achieved state-of-the-art performances for S-UGC VQA. The project can be found at https://github.com/lixinustc/KVQChallenge-CVPR-NTIRE2024.
Abstract:Capturing videos with wrong exposure usually produces unsatisfactory visual effects. While image exposure correction is a popular topic, the video counterpart is less explored in the literature. Directly applying prior image-based methods to input videos often results in temporal incoherence with low visual quality. Existing research in this area is also limited by the lack of high-quality benchmark datasets. To address these issues, we construct the first real-world paired video dataset, including both underexposure and overexposure dynamic scenes. To achieve spatial alignment, we utilize two DSLR cameras and a beam splitter to simultaneously capture improper and normal exposure videos. In addition, we propose a Video Exposure Correction Network (VECNet) based on Retinex theory, which incorporates a two-stream illumination learning mechanism to enhance the overexposure and underexposure factors, respectively. The estimated multi-frame reflectance and dual-path illumination components are fused at both feature and image levels, leading to visually appealing results. Experimental results demonstrate that the proposed method outperforms existing image exposure correction and underexposed video enhancement methods. The code and dataset will be available soon.
Abstract:Exposure correction aims to enhance images suffering from improper exposure to achieve satisfactory visual effects. Despite recent progress, existing methods generally mitigate either overexposure or underexposure in input images, and they still struggle to handle images with mixed exposure, i.e., one image incorporates both overexposed and underexposed regions. The mixed exposure distribution is non-uniform and leads to varying representation, which makes it challenging to address in a unified process. In this paper, we introduce an effective Region-aware Exposure Correction Network (RECNet) that can handle mixed exposure by adaptively learning and bridging different regional exposure representations. Specifically, to address the challenge posed by mixed exposure disparities, we develop a region-aware de-exposure module that effectively translates regional features of mixed exposure scenarios into an exposure-invariant feature space. Simultaneously, as de-exposure operation inevitably reduces discriminative information, we introduce a mixed-scale restoration unit that integrates exposure-invariant features and unprocessed features to recover local information. To further achieve a uniform exposure distribution in the global image, we propose an exposure contrastive regularization strategy under the constraints of intra-regional exposure consistency and inter-regional exposure continuity. Extensive experiments are conducted on various datasets, and the experimental results demonstrate the superiority and generalization of our proposed method. The code is released at: https://github.com/kravrolens/RECNet.