Abstract:Mixup style data augmentation algorithms have been widely adopted in various tasks as implicit network regularization on representation learning to improve model generalization, which can be achieved by a linear interpolation of labeled samples in input or feature space as well as target space. Inspired by good robustness of alternative dropout strategies against over-fitting on limited patterns of training samples, this paper introduces a novel concept of ShuffleMix -- Shuffle of Mixed hidden features, which can be interpreted as a kind of dropout operation in feature space. Specifically, our ShuffleMix method favors a simple linear shuffle of randomly selected feature channels for feature mixup in-between training samples to leverage semantic interpolated supervision signals, which can be extended to a generalized shuffle operation via additionally combining linear interpolations of intra-channel features. Compared to its direct competitor of feature augmentation -- the Manifold Mixup, the proposed ShuffleMix can gain superior generalization, owing to imposing more flexible and smooth constraints on generating samples and achieving regularization effects of channel-wise feature dropout. Experimental results on several public benchmarking datasets of single-label and multi-label visual classification tasks can confirm the effectiveness of our method on consistently improving representations over the state-of-the-art mixup augmentation.
Abstract:Deep representation learning is a subfield of machine learning that focuses on learning meaningful and useful representations of data through deep neural networks. However, existing methods for semantic classification typically employ pre-defined target codes such as the one-hot and the Hadamard codes, which can either fail or be less flexible to model inter-class correlation. In light of this, this paper introduces a novel learnable target coding as an auxiliary regularization of deep representation learning, which can not only incorporate latent dependency across classes but also impose geometric properties of target codes into representation space. Specifically, a margin-based triplet loss and a correlation consistency loss on the proposed target codes are designed to encourage more discriminative representations owing to enlarging between-class margins in representation space and favoring equal semantic correlation of learnable target codes respectively. Experimental results on several popular visual classification and retrieval benchmarks can demonstrate the effectiveness of our method on improving representation learning, especially for imbalanced data.
Abstract:Fine-grained visual classification can be addressed by deep representation learning under supervision of manually pre-defined targets (e.g., one-hot or the Hadamard codes). Such target coding schemes are less flexible to model inter-class correlation and are sensitive to sparse and imbalanced data distribution as well. In light of this, this paper introduces a novel target coding scheme -- dynamic target relation graphs (DTRG), which, as an auxiliary feature regularization, is a self-generated structural output to be mapped from input images. Specifically, online computation of class-level feature centers is designed to generate cross-category distance in the representation space, which can thus be depicted by a dynamic graph in a non-parametric manner. Explicitly minimizing intra-class feature variations anchored on those class-level centers can encourage learning of discriminative features. Moreover, owing to exploiting inter-class dependency, the proposed target graphs can alleviate data sparsity and imbalanceness in representation learning. Inspired by recent success of the mixup style data augmentation, this paper introduces randomness into soft construction of dynamic target relation graphs to further explore relation diversity of target classes. Experimental results can demonstrate the effectiveness of our method on a number of diverse benchmarks of multiple visual classification tasks, especially achieving the state-of-the-art performance on popular fine-grained object benchmarks and superior robustness against sparse and imbalanced data. Source codes are made publicly available at https://github.com/AkonLau/DTRG.