Abstract:In recent years, large language models (LLMs) have made significant advancements in neuro-symbolic computing. However, the combination of LLM with argumentation computation remains an underexplored domain, despite its considerable potential for real-world applications requiring defeasible reasoning. In this paper, we aim to investigate the capability of LLMs in determining the extensions of various abstract argumentation semantics. To achieve this, we develop and curate a benchmark comprising diverse abstract argumentation frameworks, accompanied by detailed explanations of algorithms for computing extensions. Subsequently, we fine-tune LLMs on the proposed benchmark, focusing on two fundamental extension-solving tasks. As a comparative baseline, LLMs are evaluated using a chain-of-thought approach, where they struggle to accurately compute semantics. In the experiments, we demonstrate that the process explanation plays a crucial role in semantics computation learning. Models trained with explanations show superior generalization accuracy compared to those trained solely with question-answer pairs. Furthermore, by leveraging the self-explanation capabilities of LLMs, our approach provides detailed illustrations that mitigate the lack of transparency typically associated with neural networks. Our findings contribute to the broader understanding of LLMs' potential in argumentation computation, offering promising avenues for further research in this domain.
Abstract:Research on Multi-modal Large Language Models (MLLMs) towards the multi-image cross-modal instruction has received increasing attention and made significant progress, particularly in scenarios involving closely resembling images (e.g., change captioning). Existing MLLMs typically follow a two-step process in their pipelines: first, extracting visual tokens independently for each input image, and then aligning these visual tokens from different images with the Large Language Model (LLM) in its textual feature space. However, the independent extraction of visual tokens for each image may result in different semantics being prioritized for different images in the first step, leading to a lack of preservation of linking information among images for subsequent LLM analysis. This issue becomes more serious in scenarios where significant variations exist among the images (e.g., visual storytelling). To address this challenge, we introduce Semantic Alignment for Multi-modal large language models (SAM). By involving the bidirectional semantic guidance between different images in the visual-token extraction process, SAM aims to enhance the preservation of linking information for coherent analysis and align the semantics of different images before feeding them into LLM. As the test bed, we propose a large-scale dataset named MmLINK consisting of 69K samples. Different from most existing datasets for MLLMs fine-tuning, our MmLINK dataset comprises multi-modal instructions with significantly diverse images. Extensive experiments on the group captioning task and the storytelling task prove the effectiveness of our SAM model, surpassing the state-of-the-art methods by a large margin (+37% for group captioning and +22% for storytelling on CIDEr score). Project page: https://mccartney01.github.io/SAM.
Abstract:In the field of computer vision, data augmentation is widely used to enrich the feature complexity of training datasets with deep learning techniques. However, regarding the generalization capabilities of models, the difference in artificial features generated by data augmentation and natural visual features has not been fully revealed. This study focuses on the visual representation variable 'illumination', by simulating its distribution degradation and examining how data augmentation techniques enhance model performance on a classification task. Our goal is to investigate the differences in generalization between models trained with augmented data and those trained under real-world illumination conditions. Results indicate that after undergoing various data augmentation methods, model performance has been significantly improved. Yet, a noticeable generalization gap still exists after utilizing various data augmentation methods, emphasizing the critical role of feature diversity in the training set for enhancing model generalization.
Abstract:Although data-driven artificial intelligence (AI) in medical image diagnosis has shown impressive performance in silico, the lack of interpretability makes it difficult to incorporate the "black box" into clinicians' workflows. To make the diagnostic patterns learned from data understandable by clinicians, we develop an interpretable model, knowledge-guided diagnosis model (KGDM), that provides a visualized reasoning process containing AI-based biomarkers and retrieved cases that with the same diagnostic patterns. It embraces clinicians' prompts into the interpreted reasoning through human-AI interaction, leading to potentially enhanced safety and more accurate predictions. This study investigates the performance, interpretability, and clinical utility of KGDM in the diagnosis of infectious keratitis (IK), which is the leading cause of corneal blindness. The classification performance of KGDM is evaluated on a prospective validation dataset, an external testing dataset, and an publicly available testing dataset. The diagnostic odds ratios (DOR) of the interpreted AI-based biomarkers are effective, ranging from 3.011 to 35.233 and exhibit consistent diagnostic patterns with clinic experience. Moreover, a human-AI collaborative diagnosis test is conducted and the participants with collaboration achieved a performance exceeding that of both humans and AI. By synergistically integrating interpretability and interaction, this study facilitates the convergence of clinicians' expertise and data-driven intelligence. The promotion of inexperienced ophthalmologists with the aid of AI-based biomarkers, as well as increased AI prediction by intervention from experienced ones, demonstrate a promising diagnostic paradigm for infectious keratitis using KGDM, which holds the potential for extension to other diseases where experienced medical practitioners are limited and the safety of AI is concerned.
Abstract:Active Domain Adaptation (ADA) aims to maximally boost model adaptation in a new target domain by actively selecting a limited number of target data to annotate.This setting neglects the more practical scenario where training data are collected from multiple sources. This motivates us to target a new and challenging setting of knowledge transfer that extends ADA from a single source domain to multiple source domains, termed Multi-source Active Domain Adaptation (MADA). Not surprisingly, we find that most traditional ADA methods cannot work directly in such a setting, mainly due to the excessive domain gap introduced by all the source domains and thus their uncertainty-aware sample selection can easily become miscalibrated under the multi-domain shifts. Considering this, we propose a Dynamic integrated uncertainty valuation framework(Detective) that comprehensively consider the domain shift between multi-source domains and target domain to detect the informative target samples. Specifically, the leverages a dynamic Domain Adaptation(DA) model that learns how to adapt the model's parameters to fit the union of multi-source domains. This enables an approximate single-source domain modeling by the dynamic model. We then comprehensively measure both domain uncertainty and predictive uncertainty in the target domain to detect informative target samples using evidential deep learning, thereby mitigating uncertainty miscalibration. Furthermore, we introduce a contextual diversity-aware calculator to enhance the diversity of the selected samples. Experiments demonstrate that our solution outperforms existing methods by a considerable margin on three domain adaptation benchmarks.
Abstract:Panoptic Scene Graph Generation (PSG) parses objects and predicts their relationships (predicate) to connect human language and visual scenes. However, different language preferences of annotators and semantic overlaps between predicates lead to biased predicate annotations in the dataset, i.e. different predicates for same object pairs. Biased predicate annotations make PSG models struggle in constructing a clear decision plane among predicates, which greatly hinders the real application of PSG models. To address the intrinsic bias above, we propose a novel framework named ADTrans to adaptively transfer biased predicate annotations to informative and unified ones. To promise consistency and accuracy during the transfer process, we propose to measure the invariance of representations in each predicate class, and learn unbiased prototypes of predicates with different intensities. Meanwhile, we continuously measure the distribution changes between each presentation and its prototype, and constantly screen potential biased data. Finally, with the unbiased predicate-prototype representation embedding space, biased annotations are easily identified. Experiments show that ADTrans significantly improves the performance of benchmark models, achieving a new state-of-the-art performance, and shows great generalization and effectiveness on multiple datasets.
Abstract:Prompt tuning, a recently emerging paradigm, enables the powerful vision-language pre-training models to adapt to downstream tasks in a parameter -- and data -- efficient way, by learning the ``soft prompts'' to condition frozen pre-training models. Though effective, it is particularly problematic in the few-shot scenario, where prompt tuning performance is sensitive to the initialization and requires a time-consuming process to find a good initialization, thus restricting the fast adaptation ability of the pre-training models. In addition, prompt tuning could undermine the generalizability of the pre-training models, because the learnable prompt tokens are easy to overfit to the limited training samples. To address these issues, we introduce a novel Gradient-RegulAted Meta-prompt learning (GRAM) framework that jointly meta-learns an efficient soft prompt initialization for better adaptation and a lightweight gradient regulating function for strong cross-domain generalizability in a meta-learning paradigm using only the unlabeled image-text pre-training data. Rather than designing a specific prompt tuning method, our GRAM can be easily incorporated into various prompt tuning methods in a model-agnostic way, and comprehensive experiments show that GRAM brings about consistent improvement for them in several settings (i.e., few-shot learning, cross-domain generalization, cross-dataset generalization, etc.) over 11 datasets. Further, experiments show that GRAM enables the orthogonal methods of textual and visual prompt tuning to work in a mutually-enhanced way, offering better generalizability beyond the uni-modal prompt tuning methods.
Abstract:Recommendation systems have shown great potential to solve the information explosion problem and enhance user experience in various online applications, which recently present two emerging trends: (i) Collaboration: single-sided model trained on-cloud (separate learning) to the device-cloud collaborative recommendation (collaborative learning). (ii) Real-time Dynamic: the network parameters are the same across all the instances (static model) to adaptive network parameters generation conditioned on the real-time instances (dynamic model). The aforementioned two trends enable the device-cloud collaborative and dynamic recommendation, which deeply exploits the recommendation pattern among cloud-device data and efficiently characterizes different instances with different underlying distributions based on the cost of frequent device-cloud communication. Despite promising, we argue that most of the communications are unnecessary to request the new parameters of the recommendation system on the cloud since the on-device data distribution are not always changing. To alleviate this issue, we designed a Intelligent DEvice-Cloud PArameter Request ModeL (IDEAL) that can be deployed on the device to calculate the request revenue with low resource consumption, so as to ensure the adaptive device-cloud communication with high revenue. We envision a new device intelligence learning task to implement IDEAL by detecting the data out-of-domain. Moreover, we map the user's real-time behavior to a normal distribution, the uncertainty is calculated by the multi-sampling outputs to measure the generalization ability of the device model to the current user behavior. Our experimental study demonstrates IDEAL's effectiveness and generalizability on four public benchmarks, which yield a higher efficient device-cloud collaborative and dynamic recommendation paradigm.
Abstract:The performance of deep neural networks for image recognition tasks such as predicting a smiling face is known to degrade with under-represented classes of sensitive attributes. We address this problem by introducing fairness-aware regularization losses based on batch estimates of Demographic Parity, Equalized Odds, and a novel Intersection-over-Union measure. The experiments performed on facial and medical images from CelebA, UTKFace, and the SIIM-ISIC melanoma classification challenge show the effectiveness of our proposed fairness losses for bias mitigation as they improve model fairness while maintaining high classification performance. To the best of our knowledge, our work is the first attempt to incorporate these types of losses in an end-to-end training scheme for mitigating biases of visual attribute predictors. Our code is available at https://github.com/nish03/FVAP.
Abstract:Content-Based Image Retrieval (CIR) aims to search for a target image by concurrently comprehending the composition of an example image and a complementary text, which potentially impacts a wide variety of real-world applications, such as internet search and fashion retrieval. In this scenario, the input image serves as an intuitive context and background for the search, while the corresponding language expressly requests new traits on how specific characteristics of the query image should be modified in order to get the intended target image. This task is challenging since it necessitates learning and understanding the composite image-text representation by incorporating cross-granular semantic updates. In this paper, we tackle this task by a novel \underline{\textbf{B}}ottom-up cr\underline{\textbf{O}}ss-modal \underline{\textbf{S}}emantic compo\underline{\textbf{S}}ition (\textbf{BOSS}) with Hybrid Counterfactual Training framework, which sheds new light on the CIR task by studying it from two previously overlooked perspectives: \emph{implicitly bottom-up composition of visiolinguistic representation} and \emph{explicitly fine-grained correspondence of query-target construction}. On the one hand, we leverage the implicit interaction and composition of cross-modal embeddings from the bottom local characteristics to the top global semantics, preserving and transforming the visual representation conditioned on language semantics in several continuous steps for effective target image search. On the other hand, we devise a hybrid counterfactual training strategy that can reduce the model's ambiguity for similar queries.